由于该是在别人的github里边下载到的,先把代码贴上:
/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * The core AEC algorithm, which is presented with time-aligned signals. AEC核心算法与对齐信号一起呈现*/ #include "webrtc/modules/audio_processing/aec/aec_core.h" #ifdef WEBRTC_AEC_DEBUG_DUMP #include <stdio.h> #endif #include <assert.h> #include <math.h> #include <stddef.h> // size_t #include <stdlib.h> #include <string.h> #include "webrtc/common_audio/ring_buffer.h" #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #include "webrtc/modules/audio_processing/aec/aec_common.h" #include "webrtc/modules/audio_processing/aec/aec_core_internal.h" #include "webrtc/modules/audio_processing/aec/aec_rdft.h" #include "webrtc/modules/audio_processing/logging/aec_logging.h" #include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h" #include "webrtc/system_wrappers/include/cpu_features_wrapper.h" #include "webrtc/typedefs.h" // Buffer size (samples) static const size_t kBufSizePartitions = 250; // 1秒16hz的音频,1 second of audio in 16 kHz. // Metrics:指标 static const int subCountLen = 4;//子计数长度 static const int countLen = 50; //延迟指标聚合窗口 static const int kDelayMetricsAggregationWindow = 1250; // 5 seconds at 16 kHz. // Quantities to control H band scaling for SWB input--用于控制SWB输入的H波段缩放的数量 static const int flagHbandCn = 1; // 用于在H波段添加舒适噪声的标志 static const float cnScaleHband = (float)0.4; //H波段舒适噪音的标度 //初始bin,用于平均低频段的nlp增益 static const int freqAvgIc = PART_LEN / 2; // matlab代码生成表: // win = sqrt(hanning(63)); win= [0; win(1:32)]; // fprintf(1,'\ t%.14f,%.14f,%.14f,\ n',win); //添加汉明窗 ALIGN16_BEG const float ALIGN16_END WebRtcAec_sqrtHanning[65] = { 0.00000000000000f, 0.02454122852291f, 0.04906767432742f, 0.07356456359967f, 0.09801714032956f, 0.12241067519922f, 0.14673047445536f, 0.17096188876030f, 0.19509032201613f, 0.21910124015687f, 0.24298017990326f, 0.26671275747490f, 0.29028467725446f, 0.31368174039889f, 0.33688985339222f, 0.35989503653499f, 0.38268343236509f, 0.40524131400499f, 0.42755509343028f, 0.44961132965461f, 0.47139673682600f, 0.49289819222978f, 0.51410274419322f, 0.53499761988710f, 0.55557023301960f, 0.57580819141785f, 0.59569930449243f, 0.61523159058063f, 0.63439328416365f, 0.65317284295378f, 0.67155895484702f, 0.68954054473707f, 0.70710678118655f, 0.72424708295147f, 0.74095112535496f, 0.75720884650648f, 0.77301045336274f, 0.78834642762661f, 0.80320753148064f, 0.81758481315158f, 0.83146961230255f, 0.84485356524971f, 0.85772861000027f, 0.87008699110871f, 0.88192126434835f, 0.89322430119552f, 0.90398929312344f, 0.91420975570353f, 0.92387953251129f, 0.93299279883474f, 0.94154406518302f, 0.94952818059304f, 0.95694033573221f, 0.96377606579544f, 0.97003125319454f, 0.97570213003853f, 0.98078528040323f, 0.98527764238894f, 0.98917650996478f, 0.99247953459871f, 0.99518472667220f, 0.99729045667869f, 0.99879545620517f, 0.99969881869620f, 1.00000000000000f}; // matlab代码生成表: // weightCurve = [0 ; 0.3 * sqrt(linspace(0,1,64))' + 0.1]; // fprintf(1, '\t%.4f, %.4f, %.4f, %.4f, %.4f, %.4f,\n', weightCurve) //曲线权重 ALIGN16_BEG const float ALIGN16_END WebRtcAec_weightCurve[65] = { 0.0000f, 0.1000f, 0.1378f, 0.1535f, 0.1655f, 0.1756f, 0.1845f, 0.1926f, 0.2000f, 0.2069f, 0.2134f, 0.2195f, 0.2254f, 0.2309f, 0.2363f, 0.2414f, 0.2464f, 0.2512f, 0.2558f, 0.2604f, 0.2648f, 0.2690f, 0.2732f, 0.2773f, 0.2813f, 0.2852f, 0.2890f, 0.2927f, 0.2964f, 0.3000f, 0.3035f, 0.3070f, 0.3104f, 0.3138f, 0.3171f, 0.3204f, 0.3236f, 0.3268f, 0.3299f, 0.3330f, 0.3360f, 0.3390f, 0.3420f, 0.3449f, 0.3478f, 0.3507f, 0.3535f, 0.3563f, 0.3591f, 0.3619f, 0.3646f, 0.3673f, 0.3699f, 0.3726f, 0.3752f, 0.3777f, 0.3803f, 0.3828f, 0.3854f, 0.3878f, 0.3903f, 0.3928f, 0.3952f, 0.3976f, 0.4000f}; // matlab代码生成表: // overDriveCurve = [sqrt(linspace(0,1,65))' + 1]; // fprintf(1, '\t%.4f, %.4f, %.4f, %.4f, %.4f, %.4f,\n', overDriveCurve); //超驱动曲线 ALIGN16_BEG const float ALIGN16_END WebRtcAec_overDriveCurve[65] = { 1.0000f, 1.1250f, 1.1768f, 1.2165f, 1.2500f, 1.2795f, 1.3062f, 1.3307f, 1.3536f, 1.3750f, 1.3953f, 1.4146f, 1.4330f, 1.4507f, 1.4677f, 1.4841f, 1.5000f, 1.5154f, 1.5303f, 1.5449f, 1.5590f, 1.5728f, 1.5863f, 1.5995f, 1.6124f, 1.6250f, 1.6374f, 1.6495f, 1.6614f, 1.6731f, 1.6847f, 1.6960f, 1.7071f, 1.7181f, 1.7289f, 1.7395f, 1.7500f, 1.7603f, 1.7706f, 1.7806f, 1.7906f, 1.8004f, 1.8101f, 1.8197f, 1.8292f, 1.8385f, 1.8478f, 1.8570f, 1.8660f, 1.8750f, 1.8839f, 1.8927f, 1.9014f, 1.9100f, 1.9186f, 1.9270f, 1.9354f, 1.9437f, 1.9520f, 1.9601f, 1.9682f, 1.9763f, 1.9843f, 1.9922f, 2.0000f}; // 延迟不可知AEC参数仍在开发中,可能会更改。 static const float kDelayQualityThresholdMax = 0.07f; static const float kDelayQualityThresholdMin = 0.01f; static const int kInitialShiftOffset = 5;//初始移位偏移 #if !defined(WEBRTC_ANDROID) static const int kDelayCorrectionStart = 1500; // 10 ms 块 延迟校正开始数据 #endif // nlp模式的目标抑制级别。 // log{0.001, 0.00001, 0.00000001} //目标抑制数组 static const float kTargetSupp[3] = {-6.9f, -11.5f, -18.4f}; // 两套参数,一组用于扩展滤波器模式。 static const float kExtendedMinOverDrive[3] = {3.0f, 6.0f, 15.0f};//扩展模式使用 static const float kNormalMinOverDrive[3] = {1.0f, 2.0f, 5.0f};//普通参数 //扩展平滑系数设置 const float WebRtcAec_kExtendedSmoothingCoefficients[2][2] = {{0.9f, 0.1f}, {0.92f, 0.08f}};//扩展平滑系数 //正常平滑系数设置 const float WebRtcAec_kNormalSmoothingCoefficients[2][2] = {{0.9f, 0.1f}, {0.93f, 0.07f}};//正常平滑系数 // 构成NLP“首选”频段的分区数。 enum { kPrefBandSize = 24//首选区段大小 }; #ifdef WEBRTC_AEC_DEBUG_DUMP //扩展使用上边的实例count extern int webrtc_aec_instance_count; #endif WebRtcAecFilterFar WebRtcAec_FilterFar;//FIR过滤器 WebRtcAecScaleErrorSignal WebRtcAec_ScaleErrorSignal;//误差信号e(n) WebRtcAecFilterAdaptation WebRtcAec_FilterAdaptation;//自适应滤波器 WebRtcAecOverdriveAndSuppress WebRtcAec_OverdriveAndSuppress;//过载和抑制 WebRtcAecComfortNoise WebRtcAec_ComfortNoise;//舒适噪音 WebRtcAecSubBandCoherence WebRtcAec_SubbandCoherence;//子带相干性 __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) { return aRe * bRe - aIm * bIm; } __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) { return aRe * bIm + aIm * bRe; } static int CmpFloat(const void* a, const void* b) { const float* da = (const float*)a; const float* db = (const float*)b; return (*da > *db) - (*da < *db); } //远端过滤器的方法 static void FilterFar(AecCore* aec, float yf[2][PART_LEN1]) { int i; for (i = 0; i < aec->num_partitions; i++) { int j; //BufBlockPos:缓冲区的位置 int xPos = (i + aec->xfBufBlockPos) * PART_LEN1; int pos = i * PART_LEN1; // Check for wrap if (i + aec->xfBufBlockPos >= aec->num_partitions) { xPos -= aec->num_partitions * (PART_LEN1); } for (j = 0; j < PART_LEN1; j++) { yf[0][j] += MulRe(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], aec->wfBuf[0][pos + j], aec->wfBuf[1][pos + j]); yf[1][j] += MulIm(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], aec->wfBuf[0][pos + j], aec->wfBuf[1][pos + j]); } } } //误差估计error信号 static void ScaleErrorSignal(AecCore* aec, float ef[2][PART_LEN1]) { const float mu = aec->extended_filter_enabled ? kExtendedMu : aec->normal_mu; //error_threshold:误差信号阈值 const float error_threshold = aec->extended_filter_enabled ? kExtendedErrorThreshold : aec->normal_error_threshold; int i; float abs_ef; for (i = 0; i < (PART_LEN1); i++) { ef[0][i] /= (aec->xPow[i] + 1e-10f); ef[1][i] /= (aec->xPow[i] + 1e-10f); abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]); if (abs_ef > error_threshold) { abs_ef = error_threshold / (abs_ef + 1e-10f); ef[0][i] *= abs_ef; ef[1][i] *= abs_ef; } // 步长因子 //const float mu = aec->extended_filter_enabled ? kExtendedMu : aec->normal_mu; ef[0][i] *= mu; ef[1][i] *= mu; } } //无时间限制的滤波器自适应。 // TODO(andrew):考虑使用低复杂度模式。 //无限自适应过滤器 // static void FilterAdaptationUnconstrained(AecCore* aec, float *fft, // float ef[2][PART_LEN1]) { // int i, j; // for (i = 0; i < aec->num_partitions; i++) { // int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1); // int pos; // // Check for wrap // if (i + aec->xfBufBlockPos >= aec->num_partitions) { // xPos -= aec->num_partitions * PART_LEN1; // } // // pos = i * PART_LEN1; // // for (j = 0; j < PART_LEN1; j++) { // aec->wfBuf[0][pos + j] += MulRe(aec->xfBuf[0][xPos + j], // -aec->xfBuf[1][xPos + j], // ef[0][j], ef[1][j]); // aec->wfBuf[1][pos + j] += MulIm(aec->xfBuf[0][xPos + j], // -aec->xfBuf[1][xPos + j], // ef[0][j], ef[1][j]); // } // } //} //自适应滤波器处理逻辑 static void FilterAdaptation(AecCore* aec, float* fft, float ef[2][PART_LEN1]) { int i, j; for (i = 0; i < aec->num_partitions; i++) { int xPos = (i + aec->xfBufBlockPos) * (PART_LEN1); int pos; // Check for wrap if (i + aec->xfBufBlockPos >= aec->num_partitions) { xPos -= aec->num_partitions * PART_LEN1; } pos = i * PART_LEN1; for (j = 0; j < PART_LEN; j++) { fft[2 * j] = MulRe(aec->xfBuf[0][xPos + j], -aec->xfBuf[1][xPos + j], ef[0][j], ef[1][j]); fft[2 * j + 1] = MulIm(aec->xfBuf[0][xPos + j], -aec->xfBuf[1][xPos + j], ef[0][j], ef[1][j]); } fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN], -aec->xfBuf[1][xPos + PART_LEN], ef[0][PART_LEN], ef[1][PART_LEN]); //fft的逆变换 aec_rdft_inverse_128(fft); memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); // fft缩放 { float scale = 2.0f / PART_LEN2; for (j = 0; j < PART_LEN; j++) { fft[j] *= scale; } } aec_rdft_forward_128(fft); aec->wfBuf[0][pos] += fft[0]; aec->wfBuf[0][pos + PART_LEN] += fft[1]; for (j = 1; j < PART_LEN; j++) { aec->wfBuf[0][pos + j] += fft[2 * j]; aec->wfBuf[1][pos + j] += fft[2 * j + 1]; } } } //过载抑制 static void OverdriveAndSuppress(AecCore* aec, float hNl[PART_LEN1], const float hNlFb, float efw[2][PART_LEN1]) { int i; for (i = 0; i < PART_LEN1; i++) { // Weight subbands if (hNl[i] > hNlFb) { hNl[i] = WebRtcAec_weightCurve[i] * hNlFb + (1 - WebRtcAec_weightCurve[i]) * hNl[i]; } hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]); // 抑制错误信号 efw[0][i] *= hNl[i]; efw[1][i] *= hNl[i]; // Ooura fft 在虚部返回不正确的信号. It matters here // because we are making an additive change with comfort noise. efw[1][i] *= -1; } } //延迟分区 static int PartitionDelay(const AecCore* aec) { //测量每个过滤器分区中的能量,并使用 //最高能量。 // TODO(bjornv):通过在每个分区上计算一个分区来分散计算成本 //阻止? float wfEnMax = 0; int i; int delay = 0; for (i = 0; i < aec->num_partitions; i++) { int j; int pos = i * PART_LEN1; float wfEn = 0; for (j = 0; j < PART_LEN1; j++) { wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] + aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j]; } if (wfEn > wfEnMax) { wfEnMax = wfEn; delay = i; } } return delay; } //阈值,以防止零远端的不良影响。 const float WebRtcAec_kMinFarendPSD = 15; // 更新以下平滑的功率谱密度(PSD): // - sd : near-end--近端 // - se : residual echo--残留回波 // - sx : far-end--远端 // - sde : cross-PSD of near-end and residual echo--近端和残留回波的交叉PSD // - sxd : cross-PSD of near-end and far-end--近端和远端的交叉PSD // // 除了更新PSD,还确定滤波器的发散状态 //采取行动后。 static void SmoothedPSD(AecCore* aec, float efw[2][PART_LEN1], float dfw[2][PART_LEN1], float xfw[2][PART_LEN1]) { //功率估计平滑系数。 const float* ptrGCoh = aec->extended_filter_enabled ? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1] : WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1]; int i; float sdSum = 0, seSum = 0; for (i = 0; i < PART_LEN1; i++) { aec->sd[i] = ptrGCoh[0] * aec->sd[i] + ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]); aec->se[i] = ptrGCoh[0] * aec->se[i] + ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]); //我们在此处设置阈值,以防止零费用3的不利影响。 //阈值不是任意选择的,但可以平衡保护和 //与算法调整之间的不利相互作用。 // TODO(bjornv):进一步研究为什么它如此敏感。 aec->sx[i] = ptrGCoh[0] * aec->sx[i] + ptrGCoh[1] * WEBRTC_SPL_MAX( xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i], WebRtcAec_kMinFarendPSD); aec->sde[i][0] = ptrGCoh[0] * aec->sde[i][0] + ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]); aec->sde[i][1] = ptrGCoh[0] * aec->sde[i][1] + ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]); aec->sxd[i][0] = ptrGCoh[0] * aec->sxd[i][0] + ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]); aec->sxd[i][1] = ptrGCoh[0] * aec->sxd[i][1] + ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]); sdSum += aec->sd[i]; seSum += aec->se[i]; } // 发散过滤器防护 . aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum; if (aec->divergeState) memcpy(efw, dfw, sizeof(efw[0][0]) * 2 * PART_LEN1); // 如果误差远大于近端(13 dB),则复位。 if (!aec->extended_filter_enabled && seSum > (19.95f * sdSum)) memset(aec->wfBuf, 0, sizeof(aec->wfBuf)); } // fft要使用的窗口时域数据。 __inline static void WindowData(float* x_windowed, const float* x) { int i; for (i = 0; i < PART_LEN; i++) { x_windowed[i] = x[i] * WebRtcAec_sqrtHanning[i]; x_windowed[PART_LEN + i] = x[PART_LEN + i] * WebRtcAec_sqrtHanning[PART_LEN - i]; } } // 将fft输出数据放入一个复数值数组中。 __inline static void StoreAsComplex(const float* data, float data_complex[2][PART_LEN1]) { int i; data_complex[0][0] = data[0]; data_complex[1][0] = 0; for (i = 1; i < PART_LEN; i++) { data_complex[0][i] = data[2 * i]; data_complex[1][i] = data[2 * i + 1]; } data_complex[0][PART_LEN] = data[1]; data_complex[1][PART_LEN] = 0; } //子带相干性 static void SubbandCoherence(AecCore* aec, float efw[2][PART_LEN1], float xfw[2][PART_LEN1], float* fft, float* cohde, float* cohxd) { float dfw[2][PART_LEN1]; int i; if (aec->delayEstCtr == 0) aec->delayIdx = PartitionDelay(aec); // 使用远端延迟 memcpy(xfw, aec->xfwBuf + aec->delayIdx * PART_LEN1, sizeof(xfw[0][0]) * 2 * PART_LEN1); // 窗口的近端 fft WindowData(fft, aec->dBuf); aec_rdft_forward_128(fft); StoreAsComplex(fft, dfw); // 窗口的误差 fft WindowData(fft, aec->eBuf); aec_rdft_forward_128(fft); StoreAsComplex(fft, efw); SmoothedPSD(aec, efw, dfw, xfw); // 子带相干性 for (i = 0; i < PART_LEN1; i++) { cohde[i] = (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) / (aec->sd[i] * aec->se[i] + 1e-10f); cohxd[i] = (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) / (aec->sx[i] * aec->sd[i] + 1e-10f); } } //获取高频带增益 static void GetHighbandGain(const float* lambda, float* nlpGainHband) { int i; nlpGainHband[0] = (float)0.0; for (i = freqAvgIc; i < PART_LEN1 - 1; i++) { nlpGainHband[0] += lambda[i]; } nlpGainHband[0] /= (float)(PART_LEN1 - 1 - freqAvgIc); } //舒适噪音产生 static void ComfortNoise(AecCore* aec, float efw[2][PART_LEN1], complex_t* comfortNoiseHband, const float* noisePow, const float* lambda) { int i, num; float rand[PART_LEN]; float noise, noiseAvg, tmp, tmpAvg; int16_t randW16[PART_LEN]; complex_t u[PART_LEN1]; const float pi2 = 6.28318530717959f; // 在[0 1]上生成统一的随机数组 WebRtcSpl_RandUArray(randW16, PART_LEN, &aec->seed); for (i = 0; i < PART_LEN; i++) { rand[i] = ((float)randW16[i]) / 32768; } //抑制低频噪声 u[0][0] = 0; u[0][1] = 0; for (i = 1; i < PART_LEN1; i++) { tmp = pi2 * rand[i - 1]; noise = sqrtf(noisePow[i]); u[i][0] = noise * cosf(tmp); u[i][1] = -noise * sinf(tmp); } u[PART_LEN][1] = 0; for (i = 0; i < PART_LEN1; i++) { // 这是与背景噪声功率匹配的适当权重 tmp = sqrtf(WEBRTC_SPL_MAX(1 - lambda[i] * lambda[i], 0)); // tmp = 1 - lambda[i]; efw[0][i] += tmp * u[i][0]; efw[1][i] += tmp * u[i][1]; } //用于H波段舒适噪音 // TODO:不要两次计算噪声和“ tmp”。 使用以前的结果。 noiseAvg = 0.0; tmpAvg = 0.0; num = 0; if (aec->num_bands > 1 && flagHbandCn == 1) { //平均噪音等级 //平均频率频谱的后半部分(即4-> 8khz) // TODO:我们不需要num。 我们知道要累加多少元素。 for (i = PART_LEN1 >> 1; i < PART_LEN1; i++) { num++; noiseAvg += sqrtf(noisePow[i]); } noiseAvg /= (float)num; //平均nlp比例 //平均频率频谱的后半部分(即4-> 8khz) // TODO:我们不需要num。 我们知道要累加多少元素。 num = 0; for (i = PART_LEN1 >> 1; i < PART_LEN1; i++) { num++; tmpAvg += sqrtf(WEBRTC_SPL_MAX(1 - lambda[i] * lambda[i], 0)); } tmpAvg /= (float)num; //对H波段使用平均噪声 // TODO:我们这里可能应该有一个新的随机向量。 //拒绝低频噪声。 u[0][0] = 0; u[0][1] = 0; for (i = 1; i < PART_LEN1; i++) { tmp = pi2 * rand[i - 1]; //对H波段使用平均噪声 u[i][0] = noiseAvg * (float)cos(tmp); u[i][1] = -noiseAvg * (float)sin(tmp); } u[PART_LEN][1] = 0; for (i = 0; i < PART_LEN1; i++) { // Use average NLP weight for H band comfortNoiseHband[i][0] = tmpAvg * u[i][0]; comfortNoiseHband[i][1] = tmpAvg * u[i][1]; } } } //初始化level static void InitLevel(PowerLevel* level) { const float kBigFloat = 1E17f; level->averagelevel = 0; level->framelevel = 0; level->minlevel = kBigFloat; level->frsum = 0; level->sfrsum = 0; level->frcounter = 0; level->sfrcounter = 0; } //初始化数据 static void InitStats(Stats* stats) { stats->instant = kOffsetLevel; stats->average = kOffsetLevel; stats->max = kOffsetLevel; stats->min = kOffsetLevel * (-1); stats->sum = 0; stats->hisum = 0; stats->himean = kOffsetLevel; stats->counter = 0; stats->hicounter = 0; } static void InitMetrics(AecCore* self) { self->stateCounter = 0; InitLevel(&self->farlevel); InitLevel(&self->nearlevel); InitLevel(&self->linoutlevel); InitLevel(&self->nlpoutlevel); InitStats(&self->erl); InitStats(&self->erle); InitStats(&self->aNlp); InitStats(&self->rerl); } static void UpdateLevel(PowerLevel* level, float in[2][PART_LEN1]) { //在频域中进行能量计算。 FFT在 //由于重叠,PART_LEN2个样本的一部分,但是我们只需要能量 //一半的数据(最后的PART_LEN样本)。 Parseval的关系状态 //能量根据 // // \ sum_ {n = 0} ^ {N-1} | x(n)| ^ 2 = 1 / N * \ sum_ {n = 0} ^ {N-1} | X(n)| ^ 2 // =能源, // //其中N = PART_LEN2。因为我们只对计算能量感兴趣 //对于最后的PART_LEN样本,我们通过计算ENERGY和 //除以2 // // \ sum_ {n = N / 2} ^ {N-1} | x(n)| ^ 2〜=能源/ 2 // //由于我们处理的是实值时域信号,因此我们只存储频率 // bins [0,PART_LEN],这是| in |由组成。为了计算能量,我们 //需要添加缺少部分的贡献 // [PART_LEN + 1,PART_LEN2-1]。在相移之前,这些值是相同的 //使用[1,PART_LEN-1]中的值,因此将这些值乘以2。 //是下面的for循环中的值,但是乘以2和除法 //被2取消。 // TODO(bjornv):研究在其他地方重复使用的能源计算 //放置在代码中。 int k = 1; // Imaginary parts are zero at end points and left out of the calculation. float energy = (in[0][0] * in[0][0]) / 2; energy += (in[0][PART_LEN] * in[0][PART_LEN]) / 2; for (k = 1; k < PART_LEN; k++) { energy += (in[0][k] * in[0][k] + in[1][k] * in[1][k]); } energy /= PART_LEN2; level->sfrsum += energy; level->sfrcounter++; if (level->sfrcounter > subCountLen) { level->framelevel = level->sfrsum / (subCountLen * PART_LEN); level->sfrsum = 0; level->sfrcounter = 0; if (level->framelevel > 0) { if (level->framelevel < level->minlevel) { level->minlevel = level->framelevel; // New minimum. } else { level->minlevel *= (1 + 0.001f); // Small increase. } } level->frcounter++; level->frsum += level->framelevel; if (level->frcounter > countLen) { level->averagelevel = level->frsum / countLen; level->frsum = 0; level->frcounter = 0; } } } static void UpdateMetrics(AecCore* aec) { float dtmp, dtmp2; const float actThresholdNoisy = 8.0f; const float actThresholdClean = 40.0f; const float safety = 0.99995f; const float noisyPower = 300000.0f; float actThreshold; float echo, suppressedEcho; if (aec->echoState) { // 检查是否可能存在回声 aec->stateCounter++; } if (aec->farlevel.frcounter == 0) { if (aec->farlevel.minlevel < noisyPower) { actThreshold = actThresholdClean; } else { actThreshold = actThresholdNoisy; } if ((aec->stateCounter > (0.5f * countLen * subCountLen)) && (aec->farlevel.sfrcounter == 0) // 仅在活动的远端进行估计 && (aec->farlevel.averagelevel > (actThreshold * aec->farlevel.minlevel))) { // 减去噪声功率 echo = aec->nearlevel.averagelevel - safety * aec->nearlevel.minlevel; // ERL dtmp = 10 * (float)log10(aec->farlevel.averagelevel / aec->nearlevel.averagelevel + 1e-10f); dtmp2 = 10 * (float)log10(aec->farlevel.averagelevel / echo + 1e-10f); aec->erl.instant = dtmp; if (dtmp > aec->erl.max) { aec->erl.max = dtmp; } if (dtmp < aec->erl.min) { aec->erl.min = dtmp; } aec->erl.counter++; aec->erl.sum += dtmp; aec->erl.average = aec->erl.sum / aec->erl.counter; // 上均值 if (dtmp > aec->erl.average) { aec->erl.hicounter++; aec->erl.hisum += dtmp; aec->erl.himean = aec->erl.hisum / aec->erl.hicounter; } // A_NLP dtmp = 10 * (float)log10(aec->nearlevel.averagelevel / (2 * aec->linoutlevel.averagelevel) + 1e-10f); // subtract noise power suppressedEcho = 2 * (aec->linoutlevel.averagelevel - safety * aec->linoutlevel.minlevel); dtmp2 = 10 * (float)log10(echo / suppressedEcho + 1e-10f); aec->aNlp.instant = dtmp2; if (dtmp > aec->aNlp.max) { aec->aNlp.max = dtmp; } if (dtmp < aec->aNlp.min) { aec->aNlp.min = dtmp; } aec->aNlp.counter++; aec->aNlp.sum += dtmp; aec->aNlp.average = aec->aNlp.sum / aec->aNlp.counter; // 上均值 if (dtmp > aec->aNlp.average) { aec->aNlp.hicounter++; aec->aNlp.hisum += dtmp; aec->aNlp.himean = aec->aNlp.hisum / aec->aNlp.hicounter; } // ERLE // subtract noise power suppressedEcho = 2 * (aec->nlpoutlevel.averagelevel - safety * aec->nlpoutlevel.minlevel); dtmp = 10 * (float)log10(aec->nearlevel.averagelevel / (2 * aec->nlpoutlevel.averagelevel) + 1e-10f); dtmp2 = 10 * (float)log10(echo / suppressedEcho + 1e-10f); dtmp = dtmp2; aec->erle.instant = dtmp; if (dtmp > aec->erle.max) { aec->erle.max = dtmp; } if (dtmp < aec->erle.min) { aec->erle.min = dtmp; } aec->erle.counter++; aec->erle.sum += dtmp; aec->erle.average = aec->erle.sum / aec->erle.counter; // Upper mean if (dtmp > aec->erle.average) { aec->erle.hicounter++; aec->erle.hisum += dtmp; aec->erle.himean = aec->erle.hisum / aec->erle.hicounter; } } aec->stateCounter = 0; } } //初始化指标 static void UpdateDelayMetrics(AecCore* self) { int i = 0; int delay_values = 0; int median = 0; int lookahead = WebRtc_lookahead(self->delay_estimator); const int kMsPerBlock = PART_LEN / (self->mult * 8); int64_t l1_norm = 0; if (self->num_delay_values == 0) { //我们没有新的延迟值数据。 即使-1是有效的|中位数| 在 //从某种意义上说,我们允许使用负值,但实际上永远不会 //因为| kMsPerBlock |的倍数而使用 将始终返回。 //因此,我们使用-1在日志中指出延迟估算器为 //无法估算延迟。 self->delay_median = -1; self->delay_std = -1; self->fraction_poor_delays = -1; return; } // 中位数倒计时的起始值。 delay_values = self->num_delay_values >> 1; // 获取自上次更新以来的延迟值的中位数。 for (i = 0; i < kHistorySizeBlocks; i++) { delay_values -= self->delay_histogram[i]; if (delay_values < 0) { median = i; break; } } // 提前考虑。 self->delay_median = (median - lookahead) * kMsPerBlock; //计算L1范数,以中位数为中心矩。 for (i = 0; i < kHistorySizeBlocks; i++) { l1_norm += abs(i - median) * self->delay_histogram[i]; } self->delay_std = (int)((l1_norm + self->num_delay_values / 2) / self->num_delay_values) * kMsPerBlock; // 确定超出范围的延迟比例,即 //负数(反因果系统)或大于AEC过滤器长度。 { int num_delays_out_of_bounds = self->num_delay_values; const int histogram_length = sizeof(self->delay_histogram) / sizeof(self->delay_histogram[0]); for (i = lookahead; i < lookahead + self->num_partitions; ++i) { if (i < histogram_length) num_delays_out_of_bounds -= self->delay_histogram[i]; } self->fraction_poor_delays = (float)num_delays_out_of_bounds / self->num_delay_values; } // 重写 histogram. memset(self->delay_histogram, 0, sizeof(self->delay_histogram)); self->num_delay_values = 0; return; } //时间频率 static void TimeToFrequency(float time_data[PART_LEN2], float freq_data[2][PART_LEN1], int window) { int i = 0; // TODO(bjornv): Should we have a different function/wrapper for windowed FFT? if (window) { for (i = 0; i < PART_LEN; i++) { time_data[i] *= WebRtcAec_sqrtHanning[i]; time_data[PART_LEN + i] *= WebRtcAec_sqrtHanning[PART_LEN - i]; } } aec_rdft_forward_128(time_data); // Reorder.重新排序 freq_data[1][0] = 0; freq_data[1][PART_LEN] = 0; freq_data[0][0] = time_data[0]; freq_data[0][PART_LEN] = time_data[1]; for (i = 1; i < PART_LEN; i++) { freq_data[0][i] = time_data[2 * i]; freq_data[1][i] = time_data[2 * i + 1]; } } //无需系统延迟更新即可移动远读Ptr static int MoveFarReadPtrWithoutSystemDelayUpdate(AecCore* self, int elements) { WebRtc_MoveReadPtr(self->far_buf_windowed, elements); #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_MoveReadPtr(self->far_time_buf, elements); #endif return WebRtc_MoveReadPtr(self->far_buf, elements); } //基于信号的延迟校正 static int SignalBasedDelayCorrection(AecCore* self) { int delay_correction = 0; int last_delay = -2; assert(self != NULL); #if !defined(WEBRTC_ANDROID) //在桌面上,在| kDelayCorrectionStart |之后打开校正 框架。 这个 //是为了让延迟估计有收敛的机会。 另外,如果 //播放的音频音量很小(甚至静音),延迟估计可以返回 //非常大的延迟,如果应用了AEC,则会中断AEC。 if (self->frame_count < kDelayCorrectionStart) { return 0; } #endif // 1.检查非负延迟估计。 请注意,我们得到的估算值 //延迟估计不会补偿超前。 因此, //否| last_delay | 是无效的。 // 2.确认存在延迟更改。 此外,仅允许更改 //如果延迟超出某个区域,则采用AEC滤波器长度 //考虑在内。 // TODO(bjornv):研究是否可以删除非零延迟更改检查。 // 3.仅当延迟估计质量超过时才允许延迟校正 // | delay_quality_threshold |。 // 4.最后,验证建议的| delay_correction | 是可行的 //与远端缓冲区的大小进行比较。 last_delay = WebRtc_last_delay(self->delay_estimator); if ((last_delay >= 0) && (last_delay != self->previous_delay) && (WebRtc_last_delay_quality(self->delay_estimator) > self->delay_quality_threshold)) { int delay = last_delay - WebRtc_lookahead(self->delay_estimator); //允许实际延迟,由| lower_bound |定义 和 // | upper_bound |。 自适应回声消除滤波器目前 // | num_partitions | (共64个样本)长。 如果延迟估计为负 //或至少打开过滤器长度的3/4进行校正。 const int lower_bound = 0; const int upper_bound = self->num_partitions * 3 / 4; const int do_correction = delay <= lower_bound || delay > upper_bound; if (do_correction == 1) { int available_read = (int)WebRtc_available_read(self->far_buf); // 具有| shift_offset | 我们逐渐依赖延迟估算。 对于 //正延迟,我们通过| shift_offset |减少校正 降低 //有将AEC置于非因果状态的风险。 对于负面的延迟 //我们依靠值直至舍入误差,因此补偿1 //元素,以确保将延迟推入因果区域。 delay_correction = -delay; delay_correction += delay > self->shift_offset ? self->shift_offset : 1; self->shift_offset--; self->shift_offset = (self->shift_offset <= 1 ? 1 : self->shift_offset); if (delay_correction > available_read - self->mult - 1) { // 缓冲区中没有足够的数据来执行此移位。 因此, //我们不依赖延迟估计,并且什么也不做。 delay_correction = 0; } else { self->previous_delay = last_delay; ++self->delay_correction_count; } } } //更新| delay_quality_threshold | 一旦我们有第一次延迟 //更正。 if (self->delay_correction_count > 0) { float delay_quality = WebRtc_last_delay_quality(self->delay_estimator); delay_quality = (delay_quality > kDelayQualityThresholdMax ? kDelayQualityThresholdMax : delay_quality); self->delay_quality_threshold = (delay_quality > self->delay_quality_threshold ? delay_quality : self->delay_quality_threshold); } return delay_correction; } //NLP非线性处理过程: static void NonLinearProcessing(AecCore* aec, float* output, float* const* outputH) { float efw[2][PART_LEN1], xfw[2][PART_LEN1]; complex_t comfortNoiseHband[PART_LEN1]; float fft[PART_LEN2]; float scale, dtmp; float nlpGainHband;//nlp增益子带 int i; size_t j; /*计算相关性*/ // 相干和非线性滤波器 //conde:表示近端和误差信号的相关性,conde越大回声就越小 //cohxd:远端与近端信号相关性,cohxd值越大回声就越大 float cohde[PART_LEN1], cohxd[PART_LEN1]; //hNlDeAvg 表示参考信号与mic接收信号的不相关性;hNlXdAvg 表示aec输出信号与mic接收信号的相关性。 /*主要用于更新hNlXdAvg的最小值hNlXdAvgMin。数值0.75控制了该更新的频率,如果或者数值越大,表面hNlXdAvgMin的更新频率越快,对残留回声也会越敏感*/ float hNlDeAvg, hNlXdAvg; float hNl[PART_LEN1]; //首选子带大小 float hNlPref[kPrefBandSize]; float hNlFb = 0, hNlFbLow = 0; //prefBandQuant:首选子带数量 const float prefBandQuant = 0.75f, prefBandQuantLow = 0.5f; const int prefBandSize = kPrefBandSize / aec->mult; const int minPrefBand = 4 / aec->mult; // 功率估计平滑系数。 const float* min_overdrive = aec->extended_filter_enabled ? kExtendedMinOverDrive : kNormalMinOverDrive; // Filter energy const int delayEstInterval = 10 * aec->mult; float* xfw_ptr = NULL; aec->delayEstCtr++; if (aec->delayEstCtr == delayEstInterval) { aec->delayEstCtr = 0; } // 初始化H波段的舒适噪音 memset(comfortNoiseHband, 0, sizeof(comfortNoiseHband)); nlpGainHband = (float)0.0; dtmp = (float)0.0; // 我们应该至少在| far_buf |中存储至少一个元素。 assert(WebRtc_available_read(aec->far_buf_windowed) > 0); // NLP WebRtc_ReadBuffer(aec->far_buf_windowed, (void**)&xfw_ptr, &xfw[0][0], 1); // TODO(bjornv):研究是否可以重用| far_buf_windowed | 代替 // | xfwBuf |。 //远端缓冲远容量。 memcpy(aec->xfwBuf, xfw_ptr, sizeof(float) * 2 * PART_LEN1); //自带相关性 WebRtcAec_SubbandCoherence(aec, efw, xfw, fft, cohde, cohxd); hNlXdAvg = 0; for (i = minPrefBand; i < prefBandSize + minPrefBand; i++) { hNlXdAvg += cohxd[i]; } hNlXdAvg /= prefBandSize; hNlXdAvg = 1 - hNlXdAvg; hNlDeAvg = 0; for (i = minPrefBand; i < prefBandSize + minPrefBand; i++) { hNlDeAvg += cohde[i]; } hNlDeAvg /= prefBandSize; /*主要用于更新hNlXdAvg的最小值hNlXdAvgMin。数值0.75控制了该更新的频率,如果或者数值越大,表面hNlXdAvgMin的更新频率越快,对残留回声也会越敏感*/ if (hNlXdAvg < 0.75f && hNlXdAvg < aec->hNlXdAvgMin) { aec->hNlXdAvgMin = hNlXdAvg; } if (hNlDeAvg > 0.98f && hNlXdAvg > 0.9f) { /*aec输出信号与mic接收信号相关性大,同时参考信号与mic接收信号的不相关性较大,说明此时只有近端信号,或者残留信号非常弱*/ aec->stNearState = 1;//在只存在近端语音的情况下设置近端状态为1 } else if (hNlDeAvg < 0.95f || hNlXdAvg < 0.8f) { /*aec输出信号与mic接收信号相关性较小,或者参考信号与mic接收信号的不相关性较小(相关性较大),说明此时存在残留回声需要抑制*/ aec->stNearState = 0;//在存在远端回声则设置状态为0 } if (aec->hNlXdAvgMin == 1) { aec->echoState = 0; aec->overDrive = min_overdrive[aec->nlp_mode]; if (aec->stNearState == 1) { memcpy(hNl, cohde, sizeof(hNl)); hNlFb = hNlDeAvg; hNlFbLow = hNlDeAvg; } else { for (i = 0; i < PART_LEN1; i++) { hNl[i] = 1 - cohxd[i]; } hNlFb = hNlXdAvg; hNlFbLow = hNlXdAvg; } } else { if (aec->stNearState == 1) { aec->echoState = 0; memcpy(hNl, cohde, sizeof(hNl)); hNlFb = hNlDeAvg; hNlFbLow = hNlDeAvg; } else { aec->echoState = 1; for (i = 0; i < PART_LEN1; i++) { hNl[i] = WEBRTC_SPL_MIN(cohde[i], 1 - cohxd[i]); } //从首选频段中选择顺序统计信息。 // TODO:现在使用quicksort,但是选择算法可能是首选。 memcpy(hNlPref, &hNl[minPrefBand], sizeof(float) * prefBandSize); qsort(hNlPref, prefBandSize, sizeof(float), CmpFloat); hNlFb = hNlPref[(int)floor(prefBandQuant * (prefBandSize - 1))]; hNlFbLow = hNlPref[(int)floor(prefBandQuantLow * (prefBandSize - 1))]; } } /*检测一段时间内是否出现了更小的hNlFbMin,hNlFbMin用来更新overd的抑制程度。数值0.6用来控制参数更新频率,该数值越大hNlFbMin更新越频繁,对于残留回声会越敏感*/ // 跟踪本地滤波器最小值以确定抑制过载。 if (hNlFbLow < 0.6f && hNlFbLow < aec->hNlFbLocalMin) { aec->hNlFbLocalMin = hNlFbLow; aec->hNlFbMin = hNlFbLow; aec->hNlNewMin = 1; aec->hNlMinCtr = 0; } /*以下两个参数以固定的步长更新,为的是hNlXdAvgMin与hNlFbMin不会陷入死锁状态无法更新。当然这里的步长因子也可以控制上述两个数值的更新频率,一般是步长因子越大更新越频繁*/ aec->hNlFbLocalMin = WEBRTC_SPL_MIN(aec->hNlFbLocalMin + 0.0008f / aec->mult, 1); aec->hNlXdAvgMin = WEBRTC_SPL_MIN(aec->hNlXdAvgMin + 0.0006f / aec->mult, 1); if (aec->hNlNewMin == 1) { aec->hNlMinCtr++; } /*hNlMinCtr == 2表明hNlFbMin只在当前帧更新,而下一帧不更新。也即,当前帧找到最小数值需要连续满足hnlMinCtr - 1帧,防止误触发*/ if (aec->hNlMinCtr == 2) { aec->hNlNewMin = 0; aec->hNlMinCtr = 0; /*kTargetSupp[aec->nlp_mode]用来设置当前帧抑制多少dB*/ aec->overDrive = WEBRTC_SPL_MAX(kTargetSupp[aec->nlp_mode] / ((float)log(aec->hNlFbMin + 1e-10f) + 1e-10f), min_overdrive[aec->nlp_mode]); } //平滑过载。 if (aec->overDrive < aec->overDriveSm) { aec->overDriveSm = 0.99f * aec->overDriveSm + 0.01f * aec->overDrive; } else { aec->overDriveSm = 0.9f * aec->overDriveSm + 0.1f * aec->overDrive; } WebRtcAec_OverdriveAndSuppress(aec, hNl, hNlFb, efw); // Add comfort noise. WebRtcAec_ComfortNoise(aec, efw, comfortNoiseHband, aec->noisePow, hNl); // TODO(bjornv): 研究在以下情况下如何考虑以下窗口 //需要。 if (aec->metricsMode == 1) { // 注意,我们在时域| eBuf |中将比例缩放为2。 //另外,在转换前将时域信号加窗, //平均损失一半的能量。 我们先考虑仅在UpdateMetrics()中缩放。 UpdateLevel(&aec->nlpoutlevel, efw); } // 逆 error fft. fft[0] = efw[0][0]; fft[1] = efw[0][PART_LEN]; for (i = 1; i < PART_LEN; i++) { fft[2 * i] = efw[0][i]; // Ooura fft要求更信号。 fft[2 * i + 1] = -efw[1][i]; } aec_rdft_inverse_128(fft); // 重叠并相加以获得输出。 scale = 2.0f / PART_LEN2; for (i = 0; i < PART_LEN; i++) { fft[i] *= scale; // fft scaling fft[i] = fft[i] * WebRtcAec_sqrtHanning[i] + aec->outBuf[i]; fft[PART_LEN + i] *= scale; // fft scaling aec->outBuf[i] = fft[PART_LEN + i] * WebRtcAec_sqrtHanning[PART_LEN - i]; // 饱和输出以使其保持在允许范围内。 output[i] = WEBRTC_SPL_SAT( WEBRTC_SPL_WORD16_MAX, fft[i], WEBRTC_SPL_WORD16_MIN); } // For H band if (aec->num_bands > 1) { // H波段增益 //低频段的平均nlp:频率频谱后半段的平均值 //(4-> 8khz) GetHighbandGain(hNl, &nlpGainHband); // 逆舒适噪音 if (flagHbandCn == 1) { fft[0] = comfortNoiseHband[0][0]; fft[1] = comfortNoiseHband[PART_LEN][0]; for (i = 1; i < PART_LEN; i++) { fft[2 * i] = comfortNoiseHband[i][0]; fft[2 * i + 1] = comfortNoiseHband[i][1]; } aec_rdft_inverse_128(fft); scale = 2.0f / PART_LEN2; } // 计算增益因子 for (j = 0; j < aec->num_bands - 1; ++j) { for (i = 0; i < PART_LEN; i++) { dtmp = aec->dBufH[j][i]; dtmp = dtmp * nlpGainHband; // 可变增益 // 在Hband衰减的地方添加一些舒适噪音 if (flagHbandCn == 1 && j == 0) { fft[i] *= scale; // fft scaling dtmp += cnScaleHband * fft[i]; } // 饱和输出以使其保持在允许范围内。 outputH[j][i] = WEBRTC_SPL_SAT( WEBRTC_SPL_WORD16_MAX, dtmp, WEBRTC_SPL_WORD16_MIN); } } } //将当前块复制到旧位置。 memcpy(aec->dBuf, aec->dBuf + PART_LEN, sizeof(float) * PART_LEN); memcpy(aec->eBuf, aec->eBuf + PART_LEN, sizeof(float) * PART_LEN); // 将当前块复制到H波段的旧位置 for (j = 0; j < aec->num_bands - 1; ++j) { memcpy(aec->dBufH[j], aec->dBufH[j] + PART_LEN, sizeof(float) * PART_LEN); } memmove(aec->xfwBuf + PART_LEN1, aec->xfwBuf, sizeof(aec->xfwBuf) - sizeof(complex_t) * PART_LEN1); } static void ProcessBlock(AecCore* aec) { size_t i; float y[PART_LEN], e[PART_LEN]; float scale; float fft[PART_LEN2]; float xf[2][PART_LEN1], yf[2][PART_LEN1], ef[2][PART_LEN1]; float df[2][PART_LEN1]; float far_spectrum = 0.0f; float near_spectrum = 0.0f; float abs_far_spectrum[PART_LEN1]; float abs_near_spectrum[PART_LEN1]; const float gPow[2] = {0.9f, 0.1f}; // 噪声估计常数。 const int noiseInitBlocks = 500 * aec->mult; const float step = 0.1f; const float ramp = 1.0002f; const float gInitNoise[2] = {0.999f, 0.001f}; float nearend[PART_LEN]; float* nearend_ptr = NULL; float output[PART_LEN]; float outputH[NUM_HIGH_BANDS_MAX][PART_LEN]; float* outputH_ptr[NUM_HIGH_BANDS_MAX]; for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) { outputH_ptr[i] = outputH[i]; } float* xf_ptr = NULL; // 连接旧的和新的近端块。 for (i = 0; i < aec->num_bands - 1; ++i) { WebRtc_ReadBuffer(aec->nearFrBufH[i], (void**)&nearend_ptr, nearend, PART_LEN); memcpy(aec->dBufH[i] + PART_LEN, nearend_ptr, sizeof(nearend)); } WebRtc_ReadBuffer(aec->nearFrBuf, (void**)&nearend_ptr, nearend, PART_LEN); memcpy(aec->dBuf + PART_LEN, nearend_ptr, sizeof(nearend)); // ---------- Ooura fft ---------- #ifdef WEBRTC_AEC_DEBUG_DUMP { float farend[PART_LEN]; float* farend_ptr = NULL; WebRtc_ReadBuffer(aec->far_time_buf, (void**)&farend_ptr, farend, 1); RTC_AEC_DEBUG_WAV_WRITE(aec->farFile, farend_ptr, PART_LEN); RTC_AEC_DEBUG_WAV_WRITE(aec->nearFile, nearend_ptr, PART_LEN); } #endif //我们应该至少在| far_buf |中存储至少一个元素。 assert(WebRtc_available_read(aec->far_buf) > 0); WebRtc_ReadBuffer(aec->far_buf, (void**)&xf_ptr, &xf[0][0], 1); // Near fft memcpy(fft, aec->dBuf, sizeof(float) * PART_LEN2); TimeToFrequency(fft, df, 0); // 功率平滑 for (i = 0; i < PART_LEN1; i++) { far_spectrum = (xf_ptr[i] * xf_ptr[i]) + (xf_ptr[PART_LEN1 + i] * xf_ptr[PART_LEN1 + i]); aec->xPow[i] = gPow[0] * aec->xPow[i] + gPow[1] * aec->num_partitions * far_spectrum; // 计算绝对 spectra abs_far_spectrum[i] = sqrtf(far_spectrum); near_spectrum = df[0][i] * df[0][i] + df[1][i] * df[1][i]; aec->dPow[i] = gPow[0] * aec->dPow[i] + gPow[1] * near_spectrum; //计算绝对 spectra abs_near_spectrum[i] = sqrtf(near_spectrum); } // E刺激噪音。 等待直到dPow更稳定。 if (aec->noiseEstCtr > 50) { for (i = 0; i < PART_LEN1; i++) { if (aec->dPow[i] < aec->dMinPow[i]) { aec->dMinPow[i] = (aec->dPow[i] + step * (aec->dMinPow[i] - aec->dPow[i])) * ramp; } else { aec->dMinPow[i] *= ramp; } } } // 从一开始就平稳地增加噪声功率,从零开始, //避免突然产生的舒适噪音。 if (aec->noiseEstCtr < noiseInitBlocks) { aec->noiseEstCtr++; for (i = 0; i < PART_LEN1; i++) { if (aec->dMinPow[i] > aec->dInitMinPow[i]) { aec->dInitMinPow[i] = gInitNoise[0] * aec->dInitMinPow[i] + gInitNoise[1] * aec->dMinPow[i]; } else { aec->dInitMinPow[i] = aec->dMinPow[i]; } } aec->noisePow = aec->dInitMinPow; } else { aec->noisePow = aec->dMinPow; } // 用于记录的逐块延迟估计 if (aec->delay_logging_enabled) { if (WebRtc_AddFarSpectrumFloat( aec->delay_estimator_farend, abs_far_spectrum, PART_LEN1) == 0) { int delay_estimate = WebRtc_DelayEstimatorProcessFloat( aec->delay_estimator, abs_near_spectrum, PART_LEN1); if (delay_estimate >= 0) { // 更新延迟估计缓冲区. aec->delay_histogram[delay_estimate]++; aec->num_delay_values++; } if (aec->delay_metrics_delivered == 1 && aec->num_delay_values >= kDelayMetricsAggregationWindow) { UpdateDelayMetrics(aec); } } } //更新xfBuf块的位置。 aec->xfBufBlockPos--; if (aec->xfBufBlockPos == -1) { aec->xfBufBlockPos = aec->num_partitions - 1; } // Buffer xf memcpy(aec->xfBuf[0] + aec->xfBufBlockPos * PART_LEN1, xf_ptr, sizeof(float) * PART_LEN1); memcpy(aec->xfBuf[1] + aec->xfBufBlockPos * PART_LEN1, &xf_ptr[PART_LEN1], sizeof(float) * PART_LEN1); memset(yf, 0, sizeof(yf)); // Filter far WebRtcAec_FilterFar(aec, yf); //逆fft以获得回波估计和误差。 fft[0] = yf[0][0]; fft[1] = yf[0][PART_LEN]; for (i = 1; i < PART_LEN; i++) { fft[2 * i] = yf[0][i]; fft[2 * i + 1] = yf[1][i]; } aec_rdft_inverse_128(fft); scale = 2.0f / PART_LEN2; for (i = 0; i < PART_LEN; i++) { y[i] = fft[PART_LEN + i] * scale; // fft scaling } for (i = 0; i < PART_LEN; i++) { e[i] = nearend_ptr[i] - y[i]; } // Error fft memcpy(aec->eBuf + PART_LEN, e, sizeof(float) * PART_LEN); memset(fft, 0, sizeof(float) * PART_LEN); memcpy(fft + PART_LEN, e, sizeof(float) * PART_LEN); // TODO(bjornv): Change to use TimeToFrequency(). aec_rdft_forward_128(fft); ef[1][0] = 0; ef[1][PART_LEN] = 0; ef[0][0] = fft[0]; ef[0][PART_LEN] = fft[1]; for (i = 1; i < PART_LEN; i++) { ef[0][i] = fft[2 * i]; ef[1][i] = fft[2 * i + 1]; } RTC_AEC_DEBUG_RAW_WRITE(aec->e_fft_file, &ef[0][0], sizeof(ef[0][0]) * PART_LEN1 * 2); if (aec->metricsMode == 1) { //请注意,在转换之前,ftf中的前PART_LEN个样本是 //零。 因此,在UpdateLevel()中缩放为2不应为 //执行。 该缩放是在UpdateMetrics()中进行的。 UpdateLevel(&aec->linoutlevel, ef); } // 与远功率成反比地缩放误差信号。 WebRtcAec_ScaleErrorSignal(aec, ef); WebRtcAec_FilterAdaptation(aec, fft, ef); NonLinearProcessing(aec, output, outputH_ptr); if (aec->metricsMode == 1) { //更新功率水平和回声指标 UpdateLevel(&aec->farlevel, (float(*)[PART_LEN1])xf_ptr); UpdateLevel(&aec->nearlevel, df); UpdateMetrics(aec); } // 存储输出块。 WebRtc_WriteBuffer(aec->outFrBuf, output, PART_LEN); // 对于高频段 for (i = 0; i < aec->num_bands - 1; ++i) { WebRtc_WriteBuffer(aec->outFrBufH[i], outputH[i], PART_LEN); } RTC_AEC_DEBUG_WAV_WRITE(aec->outLinearFile, e, PART_LEN); RTC_AEC_DEBUG_WAV_WRITE(aec->outFile, output, PART_LEN); } AecCore* WebRtcAec_CreateAec() { int i; AecCore* aec = malloc(sizeof(AecCore)); if (!aec) { return NULL; } aec->nearFrBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(float)); if (!aec->nearFrBuf) { WebRtcAec_FreeAec(aec); return NULL; } aec->outFrBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(float)); if (!aec->outFrBuf) { WebRtcAec_FreeAec(aec); return NULL; } for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) { aec->nearFrBufH[i] = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(float)); if (!aec->nearFrBufH[i]) { WebRtcAec_FreeAec(aec); return NULL; } aec->outFrBufH[i] = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(float)); if (!aec->outFrBufH[i]) { WebRtcAec_FreeAec(aec); return NULL; } } // Create far-end buffers. aec->far_buf = WebRtc_CreateBuffer(kBufSizePartitions, sizeof(float) * 2 * PART_LEN1); if (!aec->far_buf) { WebRtcAec_FreeAec(aec); return NULL; } aec->far_buf_windowed = WebRtc_CreateBuffer(kBufSizePartitions, sizeof(float) * 2 * PART_LEN1); if (!aec->far_buf_windowed) { WebRtcAec_FreeAec(aec); return NULL; } #ifdef WEBRTC_AEC_DEBUG_DUMP aec->instance_index = webrtc_aec_instance_count; aec->far_time_buf = WebRtc_CreateBuffer(kBufSizePartitions, sizeof(float) * PART_LEN); if (!aec->far_time_buf) { WebRtcAec_FreeAec(aec); return NULL; } aec->farFile = aec->nearFile = aec->outFile = aec->outLinearFile = NULL; aec->debug_dump_count = 0; #endif aec->delay_estimator_farend = WebRtc_CreateDelayEstimatorFarend(PART_LEN1, kHistorySizeBlocks); if (aec->delay_estimator_farend == NULL) { WebRtcAec_FreeAec(aec); return NULL; } //我们创建与最大提前量相同的delay_estimator //由于对称性原因,延迟历史记录大小(kHistorySizeBlocks)。 aec->delay_estimator = WebRtc_CreateDelayEstimator( aec->delay_estimator_farend, kHistorySizeBlocks); if (aec->delay_estimator == NULL) { WebRtcAec_FreeAec(aec); return NULL; } #ifdef WEBRTC_ANDROID aec->delay_agnostic_enabled = 1; //默认启用DA-AEC。 // DA-AEC假设系统从一开始就是因果关系,并且会自我调整 //需要移位时的前瞻。 WebRtc_set_lookahead(aec->delay_estimator, 0); #else aec->delay_agnostic_enabled = 0; WebRtc_set_lookahead(aec->delay_estimator, kLookaheadBlocks); #endif aec->extended_filter_enabled = 0; // 装配优化 WebRtcAec_FilterFar = FilterFar; WebRtcAec_ScaleErrorSignal = ScaleErrorSignal; WebRtcAec_FilterAdaptation = FilterAdaptation; WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppress; WebRtcAec_ComfortNoise = ComfortNoise; WebRtcAec_SubbandCoherence = SubbandCoherence; #if defined(WEBRTC_ARCH_X86_FAMILY) if (WebRtc_GetCPUInfo(kSSE2)) { WebRtcAec_InitAec_SSE2(); } #endif #if defined(MIPS_FPU_LE) WebRtcAec_InitAec_mips(); #endif #if defined(WEBRTC_HAS_NEON) WebRtcAec_InitAec_neon(); #elif defined(WEBRTC_DETECT_NEON) if ((WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON) != 0) { WebRtcAec_InitAec_neon(); } #endif aec_rdft_init(); return aec; } void WebRtcAec_FreeAec(AecCore* aec) { int i; if (aec == NULL) { return; } WebRtc_FreeBuffer(aec->nearFrBuf); WebRtc_FreeBuffer(aec->outFrBuf); for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) { WebRtc_FreeBuffer(aec->nearFrBufH[i]); WebRtc_FreeBuffer(aec->outFrBufH[i]); } WebRtc_FreeBuffer(aec->far_buf); WebRtc_FreeBuffer(aec->far_buf_windowed); #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_FreeBuffer(aec->far_time_buf); #endif RTC_AEC_DEBUG_WAV_CLOSE(aec->farFile); RTC_AEC_DEBUG_WAV_CLOSE(aec->nearFile); RTC_AEC_DEBUG_WAV_CLOSE(aec->outFile); RTC_AEC_DEBUG_WAV_CLOSE(aec->outLinearFile); RTC_AEC_DEBUG_RAW_CLOSE(aec->e_fft_file); WebRtc_FreeDelayEstimator(aec->delay_estimator); WebRtc_FreeDelayEstimatorFarend(aec->delay_estimator_farend); free(aec); } int WebRtcAec_InitAec(AecCore* aec, int sampFreq) { int i; aec->sampFreq = sampFreq; if (sampFreq == 8000) { aec->normal_mu = 0.6f; aec->normal_error_threshold = 2e-6f; aec->num_bands = 1; } else { aec->normal_mu = 0.5f; aec->normal_error_threshold = 1.5e-6f; aec->num_bands = (size_t)(sampFreq / 16000); } WebRtc_InitBuffer(aec->nearFrBuf); WebRtc_InitBuffer(aec->outFrBuf); for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) { WebRtc_InitBuffer(aec->nearFrBufH[i]); WebRtc_InitBuffer(aec->outFrBufH[i]); } // 初始化 far-end buffers. WebRtc_InitBuffer(aec->far_buf); WebRtc_InitBuffer(aec->far_buf_windowed); #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_InitBuffer(aec->far_time_buf); { int process_rate = sampFreq > 16000 ? 16000 : sampFreq; RTC_AEC_DEBUG_WAV_REOPEN("aec_far", aec->instance_index, aec->debug_dump_count, process_rate, &aec->farFile ); RTC_AEC_DEBUG_WAV_REOPEN("aec_near", aec->instance_index, aec->debug_dump_count, process_rate, &aec->nearFile); RTC_AEC_DEBUG_WAV_REOPEN("aec_out", aec->instance_index, aec->debug_dump_count, process_rate, &aec->outFile ); RTC_AEC_DEBUG_WAV_REOPEN("aec_out_linear", aec->instance_index, aec->debug_dump_count, process_rate, &aec->outLinearFile); } RTC_AEC_DEBUG_RAW_OPEN("aec_e_fft", aec->debug_dump_count, &aec->e_fft_file); ++aec->debug_dump_count; #endif aec->system_delay = 0; if (WebRtc_InitDelayEstimatorFarend(aec->delay_estimator_farend) != 0) { return -1; } if (WebRtc_InitDelayEstimator(aec->delay_estimator) != 0) { return -1; } aec->delay_logging_enabled = 0; aec->delay_metrics_delivered = 0; memset(aec->delay_histogram, 0, sizeof(aec->delay_histogram)); aec->num_delay_values = 0; aec->delay_median = -1; aec->delay_std = -1; aec->fraction_poor_delays = -1.0f; aec->signal_delay_correction = 0; aec->previous_delay = -2; // (-2): Uninitialized. aec->delay_correction_count = 0; aec->shift_offset = kInitialShiftOffset; aec->delay_quality_threshold = kDelayQualityThresholdMin; aec->num_partitions = kNormalNumPartitions; //使用滤波器长度更新延迟估算器。 我们用一半| num_partitions | 考虑回声路径。 实际上我们说 //回声的持续时间最大为一半| num_partitions |,而不是 //是,但仅作为粗略的度量。 WebRtc_set_allowed_offset(aec->delay_estimator, aec->num_partitions / 2); //TODO(bjornv):我目前对启用代码进行了硬编码。 一旦建立 // AECM没有性能下降,将启用robust_validation //一直删除,并将其打开/关闭的API将被删除。 因此,删除 //这行。 WebRtc_enable_robust_validation(aec->delay_estimator, 1); aec->frame_count = 0; // 默认目标抑制模式。 aec->nlp_mode = 1; // 采样倍频器w.r.t. 8 kHz。 //如果有多个频段,我们以16 kHz的频率处理较低频段,因此 //乘数始终为2。 if (aec->num_bands > 1) { aec->mult = 2; } else { aec->mult = (short)aec->sampFreq / 8000; } aec->farBufWritePos = 0; aec->farBufReadPos = 0; aec->inSamples = 0; aec->outSamples = 0; aec->knownDelay = 0; // Initialize buffers memset(aec->dBuf, 0, sizeof(aec->dBuf)); memset(aec->eBuf, 0, sizeof(aec->eBuf)); // For H bands for (i = 0; i < NUM_HIGH_BANDS_MAX; ++i) { memset(aec->dBufH[i], 0, sizeof(aec->dBufH[i])); } memset(aec->xPow, 0, sizeof(aec->xPow)); memset(aec->dPow, 0, sizeof(aec->dPow)); memset(aec->dInitMinPow, 0, sizeof(aec->dInitMinPow)); aec->noisePow = aec->dInitMinPow; aec->noiseEstCtr = 0; // 初始化舒适噪音 for (i = 0; i < PART_LEN1; i++) { aec->dMinPow[i] = 1.0e6f; } //保存写入的最后一个块 aec->xfBufBlockPos = 0; // TODO: 研究对这些初始化的需求。 删除它们不会 //完全改变输出,并产生0.4%的整体加速比。 memset(aec->xfBuf, 0, sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1); memset(aec->wfBuf, 0, sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1); memset(aec->sde, 0, sizeof(complex_t) * PART_LEN1); memset(aec->sxd, 0, sizeof(complex_t) * PART_LEN1); memset( aec->xfwBuf, 0, sizeof(complex_t) * kExtendedNumPartitions * PART_LEN1); memset(aec->se, 0, sizeof(float) * PART_LEN1); // 为了防止第一个程序段中的数值不稳定。 for (i = 0; i < PART_LEN1; i++) { aec->sd[i] = 1; } for (i = 0; i < PART_LEN1; i++) { aec->sx[i] = 1; } memset(aec->hNs, 0, sizeof(aec->hNs)); memset(aec->outBuf, 0, sizeof(float) * PART_LEN); aec->hNlFbMin = 1; aec->hNlFbLocalMin = 1; aec->hNlXdAvgMin = 1; aec->hNlNewMin = 0; aec->hNlMinCtr = 0; aec->overDrive = 2; aec->overDriveSm = 2; aec->delayIdx = 0; aec->stNearState = 0; aec->echoState = 0; aec->divergeState = 0; aec->seed = 777; aec->delayEstCtr = 0; // 默认禁用指标 aec->metricsMode = 0; InitMetrics(aec); return 0; } void WebRtcAec_BufferFarendPartition(AecCore* aec, const float* farend) { float fft[PART_LEN2]; float xf[2][PART_LEN1]; // 检查缓冲区是否已满,并在这种情况下刷新最早的数据。 if (WebRtc_available_write(aec->far_buf) < 1) { WebRtcAec_MoveFarReadPtr(aec, 1); } // 无需窗口即可将远端分区转换到频域。 memcpy(fft, farend, sizeof(float) * PART_LEN2); TimeToFrequency(fft, xf, 0); WebRtc_WriteBuffer(aec->far_buf, &xf[0][0], 1); //通过加窗将远端分区转换到频域。 memcpy(fft, farend, sizeof(float) * PART_LEN2); TimeToFrequency(fft, xf, 1); WebRtc_WriteBuffer(aec->far_buf_windowed, &xf[0][0], 1); } int WebRtcAec_MoveFarReadPtr(AecCore* aec, int elements) { int elements_moved = MoveFarReadPtrWithoutSystemDelayUpdate(aec, elements); aec->system_delay -= elements_moved * PART_LEN; return elements_moved; } void WebRtcAec_ProcessFrames(AecCore* aec, const float* const* nearend, size_t num_bands, size_t num_samples, int knownDelay, float* const* out) { size_t i, j; int out_elements = 0; aec->frame_count++; //对于每个帧,过程如下: // 1)如果system_delay指示太小而无法处理 //帧,我们用足够的数据填充缓冲区10毫秒。 // 2 a)通过移动读取指针将缓冲区调整为系统延迟。 // b)如果我们检测到不良的AEC,则应用基于信号的延迟校正 //性能。 // 3)TODO(bjornv):研究是否需要添加以下内容: //如果由于缓冲区大小限制而无法移动读取指针 //刷新/填充缓冲区。 // 4)处理尽可能多的分区。 // 5)更新| system_delay |关于FRAME_LEN的整个帧 //样本。即使我们还有待处理的数据(我们与 //分区),我们考虑更新整个框架,因为 //我们在audio_processing中输入和输出的数据量。 // 6)更新输出。 // AEC内置了两种不同的延迟估计算法。 //首先依赖于用户的延迟输入值和 //移位的缓冲元素由| knownDelay |控制。此延迟将 //猜测要转移多少远端缓冲区才能与之对齐 //近端信号。另一种延迟估算算法使用 //远端和近端信号以查找它们之间的偏移。这个 //(称为“信号延迟”)然后用于微调对齐方式,或者 //简单地补偿基于系统的错误。 //请注意,这两种算法是独立运行的。目前,我们只 //允许打开一种算法。 assert(aec->num_bands == num_bands); for (j = 0; j < num_samples; j+= FRAME_LEN) { // TODO(bjornv):将近端缓冲区处理更改为与 //远端,即具有near_pre_buf。 //缓冲近端帧。 WebRtc_WriteBuffer(aec->nearFrBuf, &nearend[0][j], FRAME_LEN); // For H band for (i = 1; i < num_bands; ++i) { WebRtc_WriteBuffer(aec->nearFrBufH[i - 1], &nearend[i][j], FRAME_LEN); } //1)最多我们在10毫秒内处理| aec-> mult | +1分区。 确保我们 //通过填充缓冲区(如果 // | system_delay | 表示其他。 if (aec->system_delay < FRAME_LEN) { // We don't have enough data so we rewind 10 ms. WebRtcAec_MoveFarReadPtr(aec, -(aec->mult + 1)); } if (!aec->delay_agnostic_enabled) { // 2 a)补偿系统延迟的可能变化。 // TODO(bjornv):研究如何舍入延迟差; //现在,我们知道传入的| knownDelay | 被低估了 //小于| aec-> knownDelay |。 因此,我们将(-32)舍入为 //方向。 另一方面,我们没有这种情况,但是 //可能会冲洗一个分区太少。 这可能会导致非因果关系, //应该对其进行调查。 也许允许非对称 //取整,例如-16。 int move_elements = (aec->knownDelay - knownDelay - 32) / PART_LEN; int moved_elements = MoveFarReadPtrWithoutSystemDelayUpdate(aec, move_elements); aec->knownDelay -= moved_elements * PART_LEN; } else { //2 b)应用基于信号的延迟校正。 int move_elements = SignalBasedDelayCorrection(aec); int moved_elements = MoveFarReadPtrWithoutSystemDelayUpdate(aec, move_elements); int far_near_buffer_diff = WebRtc_available_read(aec->far_buf) - WebRtc_available_read(aec->nearFrBuf) / PART_LEN; WebRtc_SoftResetDelayEstimator(aec->delay_estimator, moved_elements); WebRtc_SoftResetDelayEstimatorFarend(aec->delay_estimator_farend, moved_elements); aec->signal_delay_correction += moved_elements; // 如果仅依靠报告的系统延迟值,则此处的缓冲区不足 //永远不会发生,因为我们已经在上面的1)中进行了处理。 在这里,我们 //应用基于信号的延迟校正,因此最终可以 //缓冲区欠载,因为延迟估计可能是错误的。 因此,我们 //如果需要,用足够的元素填充缓冲区。 if (far_near_buffer_diff < 0) { WebRtcAec_MoveFarReadPtr(aec, far_near_buffer_diff); } } //4)处理尽可能多的块。 while (WebRtc_available_read(aec->nearFrBuf) >= PART_LEN) { ProcessBlock(aec); } // 5)更新整个帧的系统延迟。 aec->system_delay -= FRAME_LEN; //6)更新输出帧。 //如果输出少于一帧,则填充out缓冲区。 //这只应发生在第一帧。 out_elements = (int)WebRtc_available_read(aec->outFrBuf); if (out_elements < FRAME_LEN) { WebRtc_MoveReadPtr(aec->outFrBuf, out_elements - FRAME_LEN); for (i = 0; i < num_bands - 1; ++i) { WebRtc_MoveReadPtr(aec->outFrBufH[i], out_elements - FRAME_LEN); } } // 获取输出帧。 WebRtc_ReadBuffer(aec->outFrBuf, NULL, &out[0][j], FRAME_LEN); //适用于H波段。 for (i = 1; i < num_bands; ++i) { WebRtc_ReadBuffer(aec->outFrBufH[i - 1], NULL, &out[i][j], FRAME_LEN); } } } int WebRtcAec_GetDelayMetricsCore(AecCore* self, int* median, int* std, float* fraction_poor_delays) { assert(self != NULL); assert(median != NULL); assert(std != NULL); if (self->delay_logging_enabled == 0) { // Logging disabled. return -1; } if (self->delay_metrics_delivered == 0) { UpdateDelayMetrics(self); self->delay_metrics_delivered = 1; } *median = self->delay_median; *std = self->delay_std; *fraction_poor_delays = self->fraction_poor_delays; return 0; } int WebRtcAec_echo_state(AecCore* self) { return self->echoState; } void WebRtcAec_GetEchoStats(AecCore* self, Stats* erl, Stats* erle, Stats* a_nlp) { assert(erl != NULL); assert(erle != NULL); assert(a_nlp != NULL); *erl = self->erl; *erle = self->erle; *a_nlp = self->aNlp; } #ifdef WEBRTC_AEC_DEBUG_DUMP void* WebRtcAec_far_time_buf(AecCore* self) { return self->far_time_buf; } #endif void WebRtcAec_SetConfigCore(AecCore* self, int nlp_mode, int metrics_mode, int delay_logging) { assert(nlp_mode >= 0 && nlp_mode < 3); self->nlp_mode = nlp_mode; self->metricsMode = metrics_mode; if (self->metricsMode) { InitMetrics(self); } // 如果延迟日志记录是明确设置的或与延迟无关的,请打开 //启用AEC(需要延迟估计)。 self->delay_logging_enabled = delay_logging || self->delay_agnostic_enabled; if (self->delay_logging_enabled) { memset(self->delay_histogram, 0, sizeof(self->delay_histogram)); } } void WebRtcAec_enable_delay_agnostic(AecCore* self, int enable) { self->delay_agnostic_enabled = enable; } int WebRtcAec_delay_agnostic_enabled(AecCore* self) { return self->delay_agnostic_enabled; } void WebRtcAec_enable_extended_filter(AecCore* self, int enable) { self->extended_filter_enabled = enable; self->num_partitions = enable ? kExtendedNumPartitions : kNormalNumPartitions; // 用滤波器长度更新延迟估计器。 有关详细信息,请参见InitAEC()。 WebRtc_set_allowed_offset(self->delay_estimator, self->num_partitions / 2); } int WebRtcAec_extended_filter_enabled(AecCore* self) { return self->extended_filter_enabled; } int WebRtcAec_system_delay(AecCore* self) { return self->system_delay; } void WebRtcAec_SetSystemDelay(AecCore* self, int delay) { assert(delay >= 0); self->system_delay = delay; }由于webrtc回声消除部分的算法已经更新到AEC3了,想着先把AEC部分看明白,想获取webrtc的modules的完整代码可以在下边链接找: github链接