动态规划求解背包问题

tech2022-08-01  166

背包问题

1. 0-1背包问题

假设有n件物品和容量为m的背包,已知每件物品的重量及价值,在满足装入背包的物品重量最大的前提下,使得装入物品的总价值最大。 (1) 二维动态规划

d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w e i g h t s [ i ] ] + v a l u e s [ i ] ) dp[i][j]=max(dp[i-1][j], dp[i-1][j-weights[i]]+values[i]) dp[i][j]=max(dp[i1][j],dp[i1][jweights[i]]+values[i])

(2) 一维动态规划

d p [ j ] = m a x ( d p [ j ] , d p [ j − w e i g h t s [ i ] ] + v a l u e s [ i ] ) dp[j] = max(dp[j], dp[j - weights[i]] + values[i]) dp[j]=max(dp[j],dp[jweights[i]]+values[i])

#include <iostream> #include <algorithm> #include <vector> using namespace std; //二维动态规划 int knapsack2(int n, int m, vector<int> &weights, vector<int> &values) { vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0)); for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if (weights[i] > j) dp[i][j] = dp[i - 1][j]; else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weights[i]] + values[i]); } } return dp[n][m]; } //一维动态规划 int knapsack1(int n, int m, vector<int> &weights, vector<int> &values) { vector<int> dp(m + 1, 0); for (int i = 1; i <= n; i++) { for (int j = m; j >= weights[i]; j--) { dp[j] = max(dp[j], dp[j - weights[i]] + values[i]); } } return dp[m]; } int main() { int n, m; cin >> n >> m; vector<int> weights(n + 1, 0); vector<int> values(n + 1, 0); for (int i = 1; i <= n; i++) cin >> weights[i]; for (int i = 1; i <= n; i++) cin >> values[i]; cout << knapsack1(n, m, weights, values) << endl; //cout << knapsack2(n, m, weights, values) << endl; }

2. 完全背包问题

在0-1背包问题的基础上,每个物品的数量均为无限个。

d p [ j ] = m a x ( d p [ j ] , d p [ j − w e i g h t s [ i ] ] + v a l u e s [ i ] ) dp[j] = max(dp[j], dp[j - weights[i]] + values[i]) dp[j]=max(dp[j],dp[jweights[i]]+values[i])

int knapsack3(int n, int m, vector<int> &weights, vector<int> &values) { vector<int> dp(m + 1, 0); for (int i = 1; i <= n; i++) { for (int j = weights[i]; j <= m; j++) { dp[j] = max(dp[j], dp[j - weights[i]] + values[i]); } } return dp[m]; }

3. 多重背包问题

在0-1背包问题的基础上,每个物品的数量有限。

d p [ j ] = m a x ( d p [ j ] , d p [ j − k ∗ w e i g h t s [ i ] ] + k ∗ v a l u e s [ i ] ) dp[j] = max(dp[j], dp[j - k * weights[i]] + k * values[i]) dp[j]=max(dp[j],dp[jkweights[i]]+kvalues[i])

int knapsack4(int n, int m, vector<int> &weights, vector<int> &values, vector<int> &nums) { vector<int> dp(m + 1, 0); for (int i = 1; i <= n; i++) { for (int j = m; j >= weights[i]; j--) { for (int k = 0; k <= nums[i]; k++) { if (j - k * weights[i] < 0) break; dp[j] = max(dp[j], dp[j - k * weights[i]] + k * values[i]); } } } return dp[m]; }
最新回复(0)