hive练习题(商店市场调查)

tech2023-12-28  82

表数据:https://pan.baidu.com/s/1giOajxNUaU_Lc4jzTL2UnA 提取码:cba4

hive练习题

建表:1、找出顾客最常用的信用卡2、找出客户资料中排名前五的的职位名称3、在美国女性最常用的信用卡4、按性别和国家进行客户统计/国家/工作/邮箱/语言/信用卡5、计算每月总收入6、计算每个季度的总收入7、按年计算总收入8、按工作日计算总收入9、按时间段计算总收入10、按时间段计算平均消费11、按工作日计算平均消费12、计算年、月、日的交易总数13、找出交易量最大的10个客户14、找出消费最多的前10位顾客15、统计该期间交易数量最少的用户16、计算每个季度的独立客户总数17、计算每周的独立客户总数18、计算整个活动客户平均花费的最大值19、统计每月花费最多的客户20、统计每月访问次数最多的客户21、按总价找出最受欢迎的5种产品22、根据购买频率找出最畅销的5种产品23、根据客户数量找出最受欢迎的5种产品24、按客流量找出最受欢迎的商店25、根据顾客消费价格找出最受欢迎的商店26、根据顾客交易情况找出最受欢迎的商店27、根据商店和唯一的顾客id获取最受欢迎的产品28、获取每个商店的员工与顾客比29、按年和月计算每家店的收入30、按店铺制作总收益饼图31、找出每个商店最繁忙的时间段32、找出每家店的忠实顾客33、根据每位员工的最高收入找出明星商店34、在ext_store_review中找出存在冲突的交易映射关系35、了解客户评价的覆盖率36、根据评分了解客户的分布情况37、根据交易了解客户的分布情况38、客户给出的最佳评价是否总是同一家门店

建表:

store_details表

create external table store_details( store_id INT, store_name STRING, employee_number INT ) row format delimited fields terminated by ',' tblproperties("skip.header.line.count"="1"); load data local inpath '/root/kb08/hive/store/store_details.csv' into table store_details;

store_review表

create external table store_review( transaction_id BIGINT, store_id INT, review_score INT ) row format delimited fields terminated by ',' tblproperties("skip.header.line.count"="1"); load data local inpath '/root/kb08/hive/store/store_review.csv' into table store_review;

transaction_details表

create external table transaction_details( transaction_id BIGINT, customer_id BIGINT, store_id INT, price DOUBLE, product STRING, date STRING, time STRING ) row format delimited fields terminated by ',' tblproperties("skip.header.line.count"="1"); load data local inpath '/root/kb08/hive/store/transaction_details.csv' into table transaction_details;

customer_datails表

create table if not exists customer_datails( customer_id INT, first_name STRING, last_name STRING, email STRING, gender STRING, address STRING, country string, language STRING, job STRING, credit_type STRING, credit_type STRING, credit_no STRING ) row format delimited fields terminated by ',' lines terminated by '\n' tblproperties("skip.header.line.count"="1"); load data local inpath '/root/kb08/hive/store/customer_datails.csv' into table customer_datails;

练习题:

1、找出顾客最常用的信用卡

select credit_type from ( select credit_type,dense_rank() over(order by num DESC) rnk from ( select credit_type,count(1) num from customer_details group by credit_type order by num DESC )T )T where rnk=1

2、找出客户资料中排名前五的的职位名称

select job from( select job,dense_rank() over(order by num DESC) rnk from( select job,count(1) num from customer_datails group by job order by num DESC )T )T where rnk<=5

3、在美国女性最常用的信用卡

select credit_type from( select credit_type,dense_rank() over(order by num DESC) rnk from ( select credit_type,count(1) num from customer_datails where country='United States' and gender='Female' group by credit_type order by num DESC )T )T where rnk=1

4、按性别和国家进行客户统计/国家/工作/邮箱/语言/信用卡

select country,gender,concat_ws(',',collect_set(dn)) hdns from( select country,gender,dn from( select country,gender,dn,enum,rank() over(partition by country,gender) rnk from( select country,gender,dn,count(1) enum from( select country,gender,regexp_extract(email,'(\\w+)@(.+)',2) dn from customer_datails )T group by country,gender,dn )T )T where rnk=1 )T group by country,gender

5、计算每月总收入

select month(to_date(regexp_replace(date,'/','-'))) month,sum(price) from transaction_details group by month(to_date(regexp_replace(date,'/','-'))) order by month

6、计算每个季度的总收入

select quarter,sum(price) from (select ceil(month(to_date(regexp_replace(date,'/','-')))/3) quarter,price from transaction_details)r1 group by quarter

7、按年计算总收入

select year(to_date(regexp_replace(date,'/','-'))) year,sum(price) from transaction_details group by year(to_date(regexp_replace(date,'/','-'))) order by year

8、按工作日计算总收入

周日:1 周一:2 周二:3 周三:4 周四:5 周五:6 周六:7 select dayofweek,sum from (select dayofweek(to_date(regexp_replace(date,'/','-'))) dayofweek,sum(price) sum from transaction_details group by dayofweek(to_date(regexp_replace(date,'/','-'))))r1 where dayofweek>=2 and dayofweek<=6

9、按时间段计算总收入

select cast(substr(time,0,instr(time,':')-1) as INT) hour,sum(price) sum_prive from transaction_details group by substr(time,0,instr(time,':')-1) order by hour

10、按时间段计算平均消费

select cast(substr(time,0,instr(time,':')-1) as INT) hour,avg(price) avg_price from transaction_details group by substr(time,0,instr(time,':')-1) order by hour

11、按工作日计算平均消费

select dayofweek,sum from (select dayofweek(to_date(regexp_replace(date,'/','-'))) dayofweek,avg(price) avg_price from transaction_details group by dayofweek(to_date(regexp_replace(date,'/','-'))))r1 where dayofweek>=2 and dayofweek<=6

12、计算年、月、日的交易总数

with r1 as (select year(to_date(regexp_replace(date,'/','-'))) time,count(transaction_id) from transaction_details group by year(to_date(regexp_replace(date,'/','-'))) order by time DESC), r2 as (select month(to_date(regexp_replace(date,'/','-'))) time,count(transaction_id) from transaction_details group by month(to_date(regexp_replace(date,'/','-'))) order by time DESC), r3 as (select day(to_date(regexp_replace(date,'/','-'))) time,count(transaction_id) from transaction_details group by day(to_date(regexp_replace(date,'/','-'))) order by time DESC) select * from r1 union all select * from r2 union all select * from r3

13、找出交易量最大的10个客户

select customer_id,num,rnk from (select customer_id,dense_rank() over(order by num DESC) rnk from (select customer_id,count(1) num from transaction_details group by customer_id)r1)r2 where rnk<=10

14、找出消费最多的前10位顾客

select customer_id,,sum_pricernk from (select customer_id,dense_rank() over(order by sum_price DESC) rnk from (select customer_id,sum(price) sum_price from transaction_details group by customer_id)r1)r2 where rnk<=10

15、统计该期间交易数量最少的用户

select customer_id,rnk from (select customer_id,dense_rank() over(order by num) rnk from (select customer_id,count(1) num from transaction_details group by customer_id)r1)r2 where rnk=1

16、计算每个季度的独立客户总数

select quarter,count(customer_id) num from( select case when month<=3 then 1 when month<=6 then 2 when month<=9 then 3 else 4 end quarter,customer_id from ( select month(to_date(regexp_replace(date,'/','-'))) month,customer_id from transaction_details )r1 group by month,customer_id)r2 group by quarter

17、计算每周的独立客户总数

select weekofyear,count(customer_id) num from (select weekofyear,customer_id from (select weekofyear(to_date(regexp_replace(date,'/','-'))) weekofyear,customer_id from transaction_details )r1 group by weekofyear,customer_id)r2 group by weekofyear

18、计算整个活动客户平均花费的最大值

select customer_id,avg_price,rnk from (select customer_id,avg_price,dense_rank() over(order by avg_price DESC) rnk from (select customer_id,avg(price) avg_price from transaction_details group by customer_id)r1)r2 where rnk=1

19、统计每月花费最多的客户

select month,customer_id,sum_price,rnk from ( select month,customer_id,sum_price,dense_rank() over(partition by month order by sum_price DESC) rnk from ( select month,customer_id,sum(price) sum_price from (select month(to_date(regexp_replace(date,'/','-'))) month,customer_id,price from transaction_details )r1 group by month,customer_id )r2)r3 where rnk=1

20、统计每月访问次数最多的客户

select month,customer_id,rnk from ( select month,customer_id,dense_rank() over(partition by month order by num DESC) rnk from ( select month,customer_id,count(transaction_id) num from ( select month(to_date(regexp_replace(date,'/','-'))) month, customer_id,transaction_id from transaction_details )r1 group by month,customer_id )r2)r3 where rnk=1

21、按总价找出最受欢迎的5种产品

select product,sum_price,rnk from ( select product,sum_price,dense_rank() over(order by sum_price DESC) rnk from ( select product,sum(price) sum_price from transaction_details group by product )r1)r2 where rnk<=5

22、根据购买频率找出最畅销的5种产品

select product,num,rnk from ( select product,num,dense_rank() over(order by num DESC) rnk from ( select product,count(transaction_id) num from transaction_details group by product )r1)r2 where rnk<=5

23、根据客户数量找出最受欢迎的5种产品

select product,num,rnk from ( select product,num,dense_rank() over(order by num DESC) rnk from ( select product,count(customer_id) num from transaction_details group by product )r1)r2 where rnk<=5

24、按客流量找出最受欢迎的商店

select store_id,num,rnk from (select store_id,num,dense_rank() over(order by num DESC) rnk from( select store_id,count(transaction_id) num from transaction_details group by store_id )r1)r2 where rnk=1

25、根据顾客消费价格找出最受欢迎的商店

select store_id,sum(price) sum_price from transaction_details group by store_id order by sum_price DESC limit 1 select store_id,sum_price,rnk from ( select store_id,sum_price,dense_rank() over(order by sum_price) rnk from ( select store_id,sum(price) sum_price from transaction_details group by store_id )r1)r2 where rnk=1

26、根据顾客交易情况找出最受欢迎的商店

select store_id,rnk from (select store_id,dense_rank() over(order by num) rnk from (select store_id,count(transaction_id) num from transaction_details group by store_id)r1)r2 where rnk =1

27、根据商店和唯一的顾客id获取最受欢迎的产品

select store_id,product,rnk from (select store_id,product,dense_rank() over(partition by store_id order by num DESC) rnk from (select store_id,product,count(distinct customer_id) num from transaction_details group by store_id,product)r1)r2 where rnk = 1

28、获取每个商店的员工与顾客比

select S.store_id,customer_num,employee_number,customer_num/employee_number as `%` from ( select store_id,count(customer_id) customer_num from transaction_details group by store_id )r1 inner join store_details S on S.store_id=r1.store_id

29、按年和月计算每家店的收入

select store_id,year,month,sum(price) sum_price from ( select store_id, year(to_date(regexp_replace(date,'/','-'))) year, month(to_date(regexp_replace(date,'/','-'))) month,price from transaction_details )r1 group by store_id,year,month

30、按店铺制作总收益饼图

select store_id,sum(price) sum_price from transaction_details group by store_id

31、找出每个商店最繁忙的时间段

select store_id,hours,sum,rnk from (select store_id,hours,sum,dense_rank() over(partition by store_id order by sum DESC) rnk from (select store_id, case when hour<=6 then 1 when hour<=12 then 2 when hour<=18 then 3 else 4 end hours, sum(num) sum from (select store_id, cast(substr(time,0,instr(time,':')-1)as INT) hour, count(transaction_id) num from transaction_details group by store_id,cast(substr(time,0,instr(time,':')-1)as INT) )r1 group by store_id,case when hour<=6 then 1 when hour<=12 then 2 when hour<=18 then 3 else 4 end)r2 )r3 where rnk=1

32、找出每家店的忠实顾客

select store_id,customer_id,rnk from ( select store_id,customer_id,dense_rank() over(partition by store_id order by num DESC) rnk from ( select store_id,customer_id,count(*) num from transaction_details group by store_id,customer_id )r1)r2 where rnk=1

33、根据每位员工的最高收入找出明星商店

select r3.store_id,sum_price,employee_number,wage,rnk from (select r2.store_id,sum_price,employee_number,wage,dense_rank() over(order by wage DESC) rnk from (select S.store_id,sum_price,employee_number,(sum_price/employee_number)as wage from (select store_id,sum(price) sum_price from transaction_details group by store_id)r1 inner join store_details S on r1.store_id=S.store_id)r2)r3 where rnk=1

34、在ext_store_review中找出存在冲突的交易映射关系

select transaction_id from transaction_details group by transaction_id having count(1)>1

35、了解客户评价的覆盖率

select store_id,count(1) from v_store_review group by store_id

36、根据评分了解客户的分布情况

select store_id,review_score,count(1) from v_store_review group by store_id,review_score

37、根据交易了解客户的分布情况

select store_id,customer_id,count(1) from transaction_details group by store_id,customer_id

38、客户给出的最佳评价是否总是同一家门店

select store_id,count(1) from (select store_id,review_score from v_store_review where review_score='5')r1 group by store_id
最新回复(0)