使用Boston房价数据,训练一个一元线性模型

tech2024-07-01  61

使用Boston房价数据,训练一个一元线性模型

import tensorflow as tf import matplotlib.pyplot as plt

Boston_housing数据已经集成到Tensorflow2中了,第一次使用会自动进行下载

boston = tf.keras.datasets.boston_housing (x_train, y_train), (x_test, y_test) = boston.load_data() Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/boston_housing.npz 57344/57026 [==============================] - 1s 9us/step

查看x_train的数据类型和维度

type(x_train) numpy.ndarray x_train.shape (404, 13)

选择x_train中的第5列数据作为训练数据集x;y_train作为训练数据集y。

绘制了x和y的散点图:

plt.scatter(x_train[:,5], y_train) <matplotlib.collections.PathCollection at 0x27ea78eb6d0>

数据格式转换:x_train 和 y_train是numpy.ndarray类型,需要转换为tensor类型。

x = tf.constant(x_train[:,5]) type(x) tensorflow.python.framework.ops.EagerTensor y = tf.constant(y_train) type(y) tensorflow.python.framework.ops.EagerTensor

模型训练

通过 tf.keras.Sequential() 实例化一个model

model = tf.keras.Sequential()

通过 model.add() 向模型中添加层,这里先定义了输入数据是一个一维的。

model.add(tf.keras.Input(shape=(1,)))

向model中添加一个全连接层,定义输出的数据是一维的。

model.add(tf.keras.layers.Dense(1))

通过 summary() 查看model的信息

model.summary() Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 1) 2 _________________________________________________________________ dense_1 (Dense) (None, 1) 2 ================================================================= Total params: 4 Trainable params: 4 Non-trainable params: 0 _________________________________________________________________

编译model,定义优化器为adam,损失函数为mse

model.compile(optimizer='adam', loss='mse' ) history = model.fit(x, y, epochs=5000) Epoch 1/5000 13/13 [==============================] - 0s 599us/step - loss: 647.3615 Epoch 2/5000 13/13 [==============================] - 0s 460us/step - loss: 642.5150 Epoch 3/5000 13/13 [==============================] - 0s 586us/step - loss: 637.8333 Epoch 4/5000 13/13 [==============================] - 0s 614us/step - loss: 633.3293 Epoch 5/5000 13/13 [==============================] - 0s 537us/step - loss: 628.9990 Epoch 6/5000 13/13 [==============================] - 0s 767us/step - loss: 624.8962 Epoch 7/5000 13/13 [==============================] - 0s 614us/step - loss: 620.8807 Epoch 8/5000 13/13 [==============================] - 0s 426us/step - loss: 617.1241 Epoch 9/5000 13/13 [==============================] - 0s 614us/step - loss: 613.4361

预测

model.predict(tf.constant([12])) array([[72.69166]], dtype=float32)
最新回复(0)