2.4高阶导数、隐函数求导以及由参数方程确定的函数求导

tech2024-07-17  64

高阶导数

引入

现有时间和路程的函数关系 S=S(t),质点在时间点t的速度为v(t)=S’(t)=dS/dt,那么质点在时间点t的加速度呢?就是质点在时间点t的速度的变化率,a(t)=v’(t)=d(dS/dt)/dt

注解

以上就是高阶导数的引入内容,二阶导数及以上都叫高阶导数

例题

例1 例2 求高阶导数的方法

归纳法 例题 例2

公式总结 (sin x)(n)=sin(x+nπ/2) (cos x)(n)=cos(x+nπ/2) (1/ax+b)(n)=[(-1)nn!an]/(ax+b)n+1

例题

公式法

例题

隐函数求导

隐函数是相对显函数的一个概念,显函数是如y=f(x)这种明确表达y与x之间的关系的函数(y=2x2+3),隐函数是没有明确的表示y和x的关系的F(x,y)=0的形式,理论上对于F(x,y)=0是存在y=f(x)的,但是大部分时候解不出来,有哪个不信邪的来试一试?ex+y=x2+y+1

对隐函数求导的方式

将隐函数显示化 比如y-x+1=0这种可以简单的进行显示化的函数,可以变化成y=x-1 2… 当函数显示化比较困难时,可以等式两边对x求导,将y看做是关于x的函数

例题

例如ex+y=x2+y+1 例2 例3 例4 例5

由参数方程确定的函数求导

引入

啥叫由参数方程确定的函数? 由上图中的方程组可以确定y和x之间理论上是存在y=y(x)的函数关系的 定理 证明

例题

好了dy/dx=2t,d2/dx2=2对吧

这里要明白,d2/dx2是y对x的二阶导数,2t求导等于2是t的导数,不是x的导数 完整的过程

总结

本篇内容较多,包含高阶导数、隐函数和由参数方程确定的函数求导,不仅内容多,还都是重点(doge)

预:微分 在总结高阶导数的Leibniz公式的时候用到了排列组合部分的内容,二项展开式也需要相关内容,所以之后我会发一篇排列组合的简单总结,以后有啥欠缺的在慢慢补。

最新回复(0)