734.能量石

tech2024-07-26  58

#include<iostream> #include<algorithm> #include<cstring> #include<vector> #include<set> #include<stack> #include<map> #include<cmath> using namespace std; const int N = 10003, inf = 0x3f3f3f3f; typedef pair<int, int> PIR; typedef long long ll; struct Stone { int s, e, l; bool operator <(const Stone S) const { return s * S.l < S.s* l; } }stone[N]; int f[N];//f[i][j]:从前i个物品中选,时间恰好是j的集合 int main() { int T; cin >> T; for (int kase = 1; kase <= T; kase++) { int n, m = 0; cin >> n; for (int i = 0; i < n; i++) { int s, e, l; cin >> s >> e >> l; stone[i] = { s,e,l }; m += s; } sort(stone, stone + n); /*整个解空间具有不确定性,即不能确定先选哪个再选哪个,对于第i个物品,如果先选 第i个则有e[i]+e[i+1]-s[i]*l[i+1];先选第i+1个,则有e[i]+e[i+1]-s[i+1]*l[i] 如果s[i]*l[i+1]<s[i+1]*l[i]则说明最优解一定是先选第i个,反之亦然;所以先对 能量石排序,确定选择顺序,缩小解空间的规模 */ memset(f, -0x3f3f3f3f, sizeof f); f[0] = 0; for (int i = 0; i < n; i++) { int s = stone[i].s, e = stone[i].e, l = stone[i].l; for (int j = m; j >= stone[i].s; j--) f[j] = max(f[j], f[j - s] + e - (j - s) * l); } int res = 0; for (int i = 0; i <= m; i++) res = max(res, f[i]); printf("Case #%d: %d\n", kase, res); } return 0; }

 

最新回复(0)