大佬的原版请参考代码里面的链接,下面显示的是我的修改版
#减少pandas占用的内存 # @from: https://www.kaggle.com/arjanso/reducing-dataframe-memory-size-by-65/code # @liscense: Apache 2.0 # @author: weijian '''函数说明 仅支持object格式和整形,浮点数 入参: props:DataFrame floattype:浮点数转换类型(所有的浮点数都会被转换到该类型),默认np.float16 floattoint:是否强制将float转换成int,默认为True floatthreshold:float转换成int阈值,大于等于这个阈值则不会转换,默认为0.01 fillnavalue:缺失值填充值,默认-999 ''' def reduce_mem_usage(props,floattype = np.float16, floattoint = True, floatthreshold = 0.01,fillnavalue = -999): # 计算当前内存 start_mem_usg = props.memory_usage().sum() / 1024 ** 2 print("Memory usage of the dataframe is :", start_mem_usg, "MB") # 哪些列包含空值,空值用-999填充。why:因为np.nan当做float处理 #NAlist = [] for col in props.columns: # 这里只过滤了objectd格式,如果你的代码中还包含其他类型,请一并过滤 if (props[col].dtypes != object): # 判断是否是int类型 isInt = False mmax = props[col].max() mmin = props[col].min() # Integer does not support NA, therefore Na needs to be filled if not np.isfinite(props[col]).all(): #NAlist.append(col) props[col].fillna(fillnavalue, inplace=True) # 用-999填充 # test if column can be converted to an integer asint = props[col].fillna(0).astype(np.int64) result = np.fabs(props[col] - asint) result = result.sum() if result < floatthreshold: # 绝对误差和小于floatthreshold认为可以转换的,要根据task修改 if result == 0: isInt = True else: isInt = floattoint # make interger / unsigned Integer datatypes if isInt: if mmin >= 0: # 最小值大于0,转换成无符号整型 if mmax <= 255: props[col] = props[col].astype(np.uint8) elif mmax <= 65535: props[col] = props[col].astype(np.uint16) elif mmax <= 4294967295: props[col] = props[col].astype(np.uint32) else: props[col] = props[col].astype(np.uint64) else: # 转换成有符号整型 if mmin > np.iinfo(np.int8).min and mmax < np.iinfo(np.int8).max: props[col] = props[col].astype(np.int8) elif mmin > np.iinfo(np.int16).min and mmax < np.iinfo(np.int16).max: props[col] = props[col].astype(np.int16) elif mmin > np.iinfo(np.int32).min and mmax < np.iinfo(np.int32).max: props[col] = props[col].astype(np.int32) elif mmin > np.iinfo(np.int64).min and mmax < np.iinfo(np.int64).max: props[col] = props[col].astype(np.int64) else: # 注意:这里对于float都转换成floattype,需要根据你的情况自己更改 props[col] = props[col].astype(floattype) # print("dtype after", props[col].dtype) # print("********************************") print("___MEMORY USAGE AFTER COMPLETION:___") mem_usg = props.memory_usage().sum() / 1024**2 print("Memory usage is: ",mem_usg," MB") print("This is ",100*mem_usg/start_mem_usg,"% of the initial size") return props