bayes概率

tech2024-10-05  34

在引出贝叶斯定理之前,先学习几个定义:边缘概率(又称先验概率):某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中那些不需要的事件通过合并成它们的全概率,而消去它们(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率),这称为边缘化(marginalization),比如A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 联合概率表示两个事件共同发生的概率。A与B的联合概率表示为P(A∩B)或者P(A,B)。条件概率(又称后验概率):事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率“。

接着,考虑一个问题:P(A|B)是在B发生的情况下A发生的可能性。 首先,事件B发生之前,我们对事件A的发生有一个基本的概率判断,称为A的先验概率,用P(A)表示; 其次,事件B发生之后,我们对事件A的发生概率重新评估,称为A的后验概率,用P(A|B)表示; 类似的,事件A发生之前,我们对事件B的发生有一个基本的概率判断,称为B的先验概率,用P(B)表示; 同样,事件A发生之后,我们对事件B的发生概率重新评估,称为B的后验概率,用P(B|A)表示。

贝叶斯定理便是基于下述贝叶斯公式:

P(A|B)=P(B|A)P(A)/P(B)

上述公式的推导其实非常简单,就是从条件概率推出。

 根据条件概率的定义,在事件B发生的条件下事件A发生的概率是

P(A|B)=P(A∩B)/P(B)

同样地,在事件A发生的条件下事件B发生的概率

P(B|A)=P(A∩B)/P(A)

整理与合并上述两个方程式,便可以得到: P(A|B)P(B)=P(A∩B)=P(B|A)P(A) 接着,上式两边同除以P(B),若P(B)是非零的,我们便可以得到贝叶斯定理的公式表达式: P(A|B)=P(B|A)*P(A)/P(B)

我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。 所以,条件概率可以理解成下面的式子: 后验概率 = 先验概率 x 调整因子 这就是贝叶斯推断的含义。我们先预估一个"先验概率",然后加入实验结果,看这个实验到底是增强还是削弱了"先验概率",由此得到更接近事实的"后验概率"。 在这里,如果"可能性函数"P(B|A)/P(B)>1,意味着"先验概率"被增强,事件A的发生的可能性变大;如果"可能性函数"=1,意味着B事件无助于判断事件A的可能性;如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小

 

例子1:参考https://www.cnblogs.com/zhoulujun/p/8893393.html

已知某种疾病的发病率是0.001,即1000人中会有1个人得病。现有一种试剂可以检验患者是否得病,它的准确率是0.99,即在患者确实得病的情况下,它有99%的可能呈现阳性。它的误报率是5%,即在患者没有得病的情况下,它有5%的可能呈现阳性。现有一个病人的检验结果为阳性,请问他确实得病的可能性有多大?

假定A事件表示得病,那么P(A)为0.001。这就是"先验概率",即没有做试验之前,我们预计的发病率。再假定B事件表示阳性,那么要计算的就是P(A|B)。这就是"后验概率",即做了试验以后,对发病率的估计。

根据条件概率公式,

用全概率公式改写分母,

 

将数字代入,

我们得到了一个惊人的结果,P(A|B)约等于0.019。也就是说,即使检验呈现阳性,病人得病的概率,也只是从0.1%增加到了2%左右。这就是所谓的"假阳性",即阳性结果完全不足以说明病人得病。

 

例子2:参考https://www.zhihu.com/question/51448623

作者:普通熊猫 链接:https://www.zhihu.com/question/51448623/answer/147298455 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。  

因为懒得打字,大量摘抄了另一位

@熊猫

同学的文字,希望能把事情说清楚: 贝叶斯公式与两个概率有关系,一个是先验概率(基础概率),一个是现象概率(观察到的条件)

仍然是熊猫给出的例子:某城市发生了一起汽车撞人逃跑事件,该城市只有两种颜色的车,蓝色15%,绿色85%,事发时有一个人在现场看见了,他指证是蓝车。但是根据专家在现场分析,当时那种条件能看正确的可能性是80%。那么,肇事的车是蓝车的概率到底是多少?

令B是城市里车为蓝色的事件,G为车子是绿色的事件,E为观察到车子为蓝色的事件。则由已知条件可以得出P(B)=0.15,P(G)=P(~B)=0.85,至于P(E)我们一会儿再说。

好了,现在,如果没有证人看到肇事者车的话,那么我们只能盲猜,因此肇事者的车子为蓝色的概率只能是整个城市里面车为蓝色的概率,也就是先验概率P(B)=0.15,因为这时我们还没有其他证据介入,只能做个粗略的估算。

接下来,当当当当,有证人了。证人说他看到了车子,并且说是蓝色的,注意,这分两种情况,…………重要的事情说两遍:贝叶斯里面现象(新的证据)部分总是分两种情况出现的:一是车子的确是蓝色的,并且证人也正确的分辨出车是蓝色的来了,概率为 P(E,B)=P(B)xP(E|B)=0.15x0.8=0.12,二是车子根本就是绿色的,只是证人看成蓝色的了,概率为P(E,~B)=P(~B)xP(E|~B)=P(~B)x(1 - P(~E|~B))=0.85x(1-0.8)=0.17(此处原本计算有误,感谢@赵成明

提醒),所以P(E)=P(E,B)+P(E,~B)=0.12+0.17=0.29

然后,我们要求解的其实是在有证人的条件下车子为蓝色的概率,也就是P(B|E)=P(E,B)/P(E)=0.12/0.29=0.41

你看,P(B|E)根本就是P(B)的加强版本,条件概率跟先验概率描述的根本就是同一件事。那么当当当当,又一个结论来了:当有新的证据出现时,P(B|E)会替代原来P(B)的角色。换句话说,现在警察找到了一个新的证人,他也觉得这辆肇事车是蓝色的,这时在新一轮的贝叶斯概率计算中,基础概率P(B)=0.41,而不是原先的0.15,大家可以算一下,新的P(B|E)=0.73,换句话说,当有两个人看见肇事车辆为蓝色的时候,对比只有一个人看到肇事车辆为蓝色的时候,该车实际为蓝色的概率大大增加

 

最新回复(0)