Fraction Construction Problem(拓展欧几里德)

tech2024-10-27  11

Fraction Construction Problem

思路

c d − e f = a b \frac{c}{d} - \frac{e}{f} = \frac{a}{b} dcfe=ba

a < b & f < b a < b \& f < b a<b&f<b

1 ≤ 1 , e ≤ 4 × 1 0 12 1 \leq 1, e \leq 4 \times10 ^{12} 11,e4×1012

当b = 1时,一定无解。

gcd(a, b) != 1,能够较为简单地构造出来。

b = p k b = p ^ k b=pk,我们设 d = p k − x , f = p x d = p ^{k - x}, f = p ^ x d=pkx,f=px,左边方程通分得到 c p x − e p k − x p k \frac{c p ^ x - e p ^{k - x}}{p ^ k} pkcpxepkx,则方程 c p x − e p k − x = a cp ^ x - ep ^{k - x} = a cpxepkx=a有解,那么一定有 g c d ( p x , p k − x ) ∣ a gcd(p ^ x, p ^{k - x}) \mid a gcd(px,pkx)a

只能 x = 0 x = 0 x=0,所以 d = p k = b d = p ^ k = b d=pk=b不符合要求。

所以这时 b b b一定有至少两个质因,我们不妨设 d × f = b d \times f = b d×f=b d , f d, f d,f互质,这样我们只要通过拓展欧几里德去求解即可。

代码

/* Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; typedef long long ll; const int inf = 0x3f3f3f3f; const double eps = 1e-7; const int N = 1e4 + 10; int prime[N], cnt; ll c, d, e, f; bool st[N]; void init() { for(int i = 2; i < N; i++) { if(!st[i]) { prime[cnt++] = i; } for(int j = 0; j < cnt && i * prime[j] < N; j++) { st[i * prime[j]] = 1; if(i % prime[j] == 0) break; } } } bool get_fac(ll n) { for(int i = 0; prime[i] * prime[i] <= n; i++) { if(n % prime[i] == 0) { d = 1; while(n % prime[i] == 0) { n /= prime[i]; d *= prime[i]; } if(n == 1) return false; return true; } } return false; } ll exgcd(ll a, ll b, ll & x, ll & y) { if(!b) { x = 1, y = 0; return a; } ll d = exgcd(b, a % b, x, y); ll temp = x; x = y; y = temp - a / b * y; return d; } int main() { // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0); int T; init(); scanf("%d", &T); while(T--) { ll a, b; scanf("%lld %lld", &a, &b); int gcd = __gcd(a, b); if(gcd != 1) { printf("%lld %lld %lld %lld\n", a / gcd + 1, b / gcd, 1, b / gcd); continue; } if(!get_fac(b)) { puts("-1 -1 -1 -1"); continue; } f = b / d; if(f < d) swap(f, d); ll x, y; ll g = exgcd(f, d, x, y); while(y > 0) x += d, y -= f; printf("%lld %lld %lld %lld\n", x * a, d, -y * a, f); } return 0; }
最新回复(0)