配置阿里云docker Tensorflow镜像下载 dataset准备和地址 mnist

tech2022-08-09  152

john@john-wang:~/tf2$ docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow

https://account.aliyun.com/login/login.htm https://cr.console.aliyun.com/cn-hangzhou/new starwang119 https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors john@john-wang:/$ sudo systemctl daemon-reload john@john-wang:/$ sudo systemctl restart docker john@john-wang:/$ docker pull tensorflow/tensorflow:latest-gpu-jupyter

https://kitieeae.mirror.aliyuncs.com

安装/升级Docker客户端 推荐安装1.10.0以上版本的Docker客户端,参考文档 docker-ce

配置镜像加速器 针对Docker客户端版本大于 1.10.0 的用户

您可以通过修改daemon配置文件/etc/docker/daemon.json来使用加速器

# sudo mkdir -p /etc/docker sudo vim /etc/docker/daemon.json { "registry-mirrors": ["https://kitieeae.mirror.aliyuncs.com"] } sudo systemctl daemon-reload sudo systemctl restart docker

下载网页和镜像 https://www.tensorflow.org/install/docker#examples_using_cpu-only_images john@john-wang:/$ docker run -it --rm tensorflow/tensorflow:latest-jupyter john@john-wang:/$ docker run -it --rm tensorflow/tensorflow

启动镜像并把当前目前镜像设为工作目录: To run a TensorFlow program developed on the host machine within a container, mount the host directory and change the container’s working directory (-v hostDir:containerDir -w workDir): john@john-wang:~/tf2$ docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow

忽略告警 python警告 import warnings warnings.filterwarnings(“ignore”)

TF警告 python环境下 通过在python文件中添加如下两行代码,设置TensorFlow日志输出级别 import os os.environ[“TF_CPP_MIN_LOG_LEVEL”] = “3”

TensorFlow的日志级别分为以下三种: TF_CPP_MIN_LOG_LEVEL = 1 //默认设置,为显示所有信息 TF_CPP_MIN_LOG_LEVEL = 2 //只显示error和warining信息 TF_CPP_MIN_LOG_LEVEL = 3 //只显示error信息 所以,当TensorFlow出现警告信息,又不想让警告信息显示时,可进行如下设置:

dataset准备 # numpy arrays x = np.arange(0, 10) # create dataset objects from the arrays, convert to tensor dx = tf.data.Dataset.from_tensor_slices(x) # zip the two datasets together dcomb = tf.data.Dataset.zip((dx, dy)).repeat().batch(3) # iter iterator = iter(dcomb) # next(iter()) for i in range(15): data = next(iterator) 以上程序成功地将numpy arrays转换成zip iter

mnist_cnn.py例程

import tensorflow as tf import os from tensorflow import keras import numpy as np import datetime as dt # import tensorflow.contrib.eager as tfe # tfe.enable_eager_execution() (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() xlen = len(x_test) x_test = tf.Variable(x_test) x_test = tf.cast(x_test, tf.float32) x_test = x_test / 255.0 # print(f"x_test {x_test.shape}") # x_test = tf.reshape(x_test, (xlen, 28, 28, 1)) x_test = tf.reshape(x_test, (len(x_test), 28, 28, 1)) STORE_PATH = '/Users/andrewthomas/Adventures in ML/TensorFlowBook/TensorBoard' def get_batch(x_data, y_data, batch_size): idxs = np.random.randint(0, len(y_data), batch_size) # print(f"idxs = {idxs}") return x_data[idxs,:,:], y_data[idxs] class ConvLayer(tf.keras.layers.Layer): def __init__(self, activation, input_channels, output_channels, window_size, pool_size, filt_stride, pool_stride, initializer=tf.keras.initializers.he_normal()): super(ConvLayer, self).__init__() self.initializer = initializer self.activation = activation self.input_channels = input_channels self.output_channels = output_channels self.window_size = window_size self.pool_size = pool_size self.filt_stride = filt_stride self.pool_stride = pool_stride self.w = self.add_weight(shape=(window_size[0], window_size[1], input_channels, output_channels), initializer=self.initializer, trainable=True) self.b = self.add_weight(shape=(output_channels,), initializer=tf.zeros_initializer, trainable=True) def call(self, inputs): filt_stride = [1, self.filt_stride[0], self.filt_stride[1], 1] out_layer = tf.nn.conv2d(inputs, self.w, filt_stride, padding='SAME') # add the bias out_layer += self.b out_layer = self.activation(out_layer) pool_shape = [1, self.pool_size[0], self.pool_size[1], 1] pool_strides = [1, self.pool_stride[0], self.pool_stride[1], 1] out_layer = tf.nn.max_pool(out_layer, ksize=pool_shape, strides=pool_strides, padding='SAME') return out_layer def loss_fn(logits, labels): return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)) model = tf.keras.Sequential([ ConvLayer(tf.nn.relu, 1, 32, [5, 5], [2, 2], [1, 1], [2, 2]), ConvLayer(tf.nn.relu, 32, 64, [5, 5], [2, 2], [1, 1], [2, 2]), tf.keras.layers.Flatten(), tf.keras.layers.Dense(300, activation=tf.nn.relu, kernel_initializer=tf.keras.initializers.he_normal()), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation=None) ]) optimizer = tf.keras.optimizers.Adam() iterations = 5 #5000 batch_size = 32 train_writer = tf.summary.create_file_writer(STORE_PATH + f"/MNIST_CNN_{dt.datetime.now().strftime('%d%m%Y%H%M')}") for i in range(iterations): batch_x, batch_y = get_batch(x_train, y_train, batch_size=batch_size) # create tensors batch_x = tf.Variable(batch_x) batch_y = tf.Variable(batch_y) batch_y = tf.cast(batch_y, tf.int32) # get the images in the right format batch_x = tf.cast(batch_x, tf.float32) batch_x = batch_x / 255.0 # print(f"batch_x = {batch_x.shape}") batch_x = tf.reshape(batch_x, (batch_size, 28, 28, 1)) with tf.GradientTape() as tape: logits = model(batch_x) # print(f"logits = {logits[0]}") loss = loss_fn(logits, batch_y) # exp softmax matrix: p=exp/sigma_exp vector:softmax_cross_entropy_with_logits: label*lnp, sum, mean e.g. loss gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) if i % 1 == 0: max_idxs = tf.argmax(logits, axis=1) print(f"logits = {logits[0]}") print(f"logits = {logits.shape}") print(max_idxs) print(max_idxs.numpy()) print(batch_y.numpy()) train_acc = np.sum(max_idxs.numpy() == batch_y.numpy()) / len(batch_y) test_logits = model(x_test, training=False) max_idxs = tf.argmax(test_logits, axis=1) test_acc = np.sum(max_idxs.numpy() == y_test) / len(y_test) print(f"Iter: {i}, loss={loss:.3f}, train accuracy={train_acc * 100:.3f}%, test accuracy={test_acc * 100:.3f}%") with train_writer.as_default(): tf.summary.scalar('loss', loss, step=i) tf.summary.scalar('train_accuracy', train_acc, step=i) tf.summary.scalar('test_accuracy', test_acc, step=i) # determine the test accuracy logits = model(x_test, training=False) max_idxs = tf.argmax(logits, axis=1) acc = np.sum(max_idxs.numpy() == y_test) / len(y_test) print("Final test accuracy is {:.2f}%".format(acc * 100))

Splits and slicing https://www.tensorflow.org/datasets/splits (cat_train, cat_valid, cat_test), info = tfds.load(‘cats_vs_dogs’, split=[‘train[:80%]’, ‘train[80%:90%]’, ‘train[-10%:]’], with_info=True, as_supervised=True) train_10_80pct_ds = tfds.load(‘mnist’, split=‘train[:10%]+train[-80%:]’)

dataset address https://www.tensorflow.org/datasets/catalog/cats_vs_dogs https://www.tensorflow.org/datasets/api_docs/python/tfds/load

最新回复(0)