ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)

tech2022-08-09  166

ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集【13+1,506】回归预测(模型评估、推理并导到csv)

 

 

 

目录

利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集【13+1,506】回归预测(模型评估、推理并导到csv)

输出数据集

1、LiR 线性回归算法

2、kNNR k最近邻算法

3、SVMR 支持向量机算法

4、DTR 决策树算法

5、RFR 随机森林算法

6、ExtraTR 极端随机树算法

7、SGDR 随机梯度上升算法

8、GBR 提升树算法

9、LightGBMR 算法

10、XGBR 算法

模型评估效果综合比较

模型推理预测综合比较


 

 

 

 

相关文章ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)实现

利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集【13+1,506】回归预测(模型评估、推理并导到csv)

输出数据集

数据集的描述: .. _boston_dataset: Boston house prices dataset --------------------------- **Data Set Characteristics:** :Number of Instances: 506 :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target. :Attribute Information (in order): - CRIM per capita crime rate by town - ZN proportion of residential land zoned for lots over 25,000 sq.ft. - INDUS proportion of non-retail business acres per town - CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) - NOX nitric oxides concentration (parts per 10 million) - RM average number of rooms per dwelling - AGE proportion of owner-occupied units built prior to 1940 - DIS weighted distances to five Boston employment centres - RAD index of accessibility to radial highways - TAX full-value property-tax rate per $10,000 - PTRATIO pupil-teacher ratio by town - B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town - LSTAT % lower status of the population - MEDV Median value of owner-occupied homes in $1000's :Missing Attribute Values: None :Creator: Harrison, D. and Rubinfeld, D.L. This is a copy of UCI ML housing dataset. https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University. The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter. The Boston house-price data has been used in many machine learning papers that address regression problems. .. topic:: References - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261. - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann. 数据的初步查验:输出回归目标值target的差异 target_max 50.0 target_min 5.0 target_avg 22.532806324110677

 

1、LiR 线性回归算法

LiR Score value: 0.6757955014529482 LiR R2 value: 0.6757955014529482 LiR MAE value: 3.5325325437053974 LiR MSE value: 25.13923652035344

 

2、kNNR k最近邻算法

 

3、SVMR 支持向量机算法

 

 

4、DTR 决策树算法

 

5、RFR 随机森林算法

 

6、ExtraTR 极端随机树算法

 

7、SGDR 随机梯度上升算法

 

 

 

8、GBR 提升树算法

 

 

9、LightGBMR 算法

 

10、XGBR 算法

 

 

模型评估效果综合比较

 

模型推理预测综合比较

 

 

 

 

 

 

 

 

 

 

 

 

 

 

一个处女座的程序猿 认证博客专家 华为杯研电赛一等 华为研数模一等奖 国内外AI竞十 人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
最新回复(0)