HDU-1028- Ignatius and the Princess III(完全背包母函数)

tech2024-12-25  17

Ignatius and the Princess III

Problem Description

“Well, it seems the first problem is too easy. I will let you know how foolish you are later.” feng5166 says.

“The second problem is, given an positive integer N, we define an equation like this: N=a[1]+a[2]+a[3]+…+a[m]; a[i]>0,1<=m<=N; My question is how many different equations you can find for a given N. For example, assume N is 4, we can find: 4 = 4; 4 = 3 + 1; 4 = 2 + 2; 4 = 2 + 1 + 1; 4 = 1 + 1 + 1 + 1; so the result is 5 when N is 4. Note that “4 = 3 + 1” and “4 = 1 + 3” is the same in this problem. Now, you do it!”

Input

The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.

Output

For each test case, you have to output a line contains an integer P which indicate the different equations you have found.

Sample Input

4 10 20

Sample Output

5 42 627

解题思路:

母函数模板题。 完全背包求方案数。

AC代码(母函数):

#include <bits/stdc++.h> using namespace std; int c1[130], c2[130]; int main() { int nNum; while(scanf("%d", &nNum) != EOF) { // 初始化 for(int i=0; i<=nNum; ++i) { c1[i] = 1; c2[i] = 0; } for(int i=2; i<=nNum; ++i) { for(int j=0; j<=nNum; ++j) for(int k=0; k+j<=nNum; k+=i) c2[k+j] += c1[j]; for(int j=0; j<=nNum; ++j) { c1[j] = c2[j]; c2[j] = 0; } } printf("%d\n", c1[nNum]); } return 0; }

AC代码(完全背包):

#include <cstdio> #include <vector> #include <queue> #include <cstring> #include <cmath> #include <map> #include <set> #include <stack> #include <string> #include <iostream> #include <algorithm> #include <iomanip> using namespace std; #define sd(n) scanf("%d",&n) #define sdd(n,m) scanf("%d%d",&n,&m) #define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k) #define pd(n) printf("%d\n", n) #define pc(n) printf("%c", n) #define pdd(n,m) printf("%d %d", n, m) #define pld(n) printf("%lld\n", n) #define pldd(n,m) printf("%lld %lld\n", n, m) #define sld(n) scanf("%lld",&n) #define sldd(n,m) scanf("%lld%lld",&n,&m) #define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k) #define sf(n) scanf("%lf",&n) #define sc(n) scanf("%c",&n) #define sff(n,m) scanf("%lf%lf",&n,&m) #define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k) #define ss(str) scanf("%s",str) #define rep(i,a,n) for(int i=a;i<=n;i++) #define per(i,a,n) for(int i=n;i>=a;i--) #define mem(a,n) memset(a, n, sizeof(a)) #define debug(x) cout << #x << ": " << x << endl #define pb push_back #define all(x) (x).begin(),(x).end() #define fi first #define se second #define mod(x) ((x)%MOD) #define gcd(a,b) __gcd(a,b) #define lowbit(x) (x&-x) #define pii map<int,int> #define mk make_pair #define rtl rt<<1 #define rtr rt<<1|1 #define Max(x,y) (x)>(y)?(x):(y) //#define int long long typedef pair<int,int> PII; typedef long long ll; typedef unsigned long long ull; typedef long double ld; const int MOD = 1e9 + 7; const ll mod = 10007; const double eps = 1e-9; const ll INF = 0x3f3f3f3f3f3f3f3fll; //const int inf = 0x3f3f3f3f; inline int read(){int ret = 0, sgn = 1;char ch = getchar(); while(ch < '0' || ch > '9'){if(ch == '-')sgn = -1;ch = getchar();} while (ch >= '0' && ch <= '9'){ret = ret*10 + ch - '0';ch = getchar();} return ret*sgn;} inline void Out(int a){if(a>9) Out(a/10);putchar(a%10+'0');} int qpow(int m, int k, int mod){int res=1%mod,t=m%mod;while(k){if(k&1)res=res*t%mod;t=t*t%mod;k>>=1;}return res;} ll gcd(ll a,ll b){if(b > a) swap(a,b); return b==0?a : gcd(b,a%b);} ll lcm(ll a,ll b){return a/gcd(a,b)*b;} ll inv(ll x,ll mod){return qpow(x,mod-2,mod)%mod;} //const int N = 3e3+15; int t = 1,cas = 1; int n,m; const int N = 5e3+3; typedef long long ll; vector<int> G[N]; int cnt[2]; int color[N]; int mark[N]; int a[N],b[N],dp[N]; int tt = 0; int flag = 1; signed main() { while(cin>>n && n) { memset(dp,0,sizeof(dp)); int sum = 0; for(int i = 0 ; i < n ; i ++){ a[i] = i+1; b[i] = n; } dp[0] = 1; for(int i = 0 ; i < n ; i ++){ for(int j = n; j >= 0; j --){ for(int k = 1; k <= n && a[i]*k <= j; k ++){ dp[j] = (dp[j]+dp[j-a[i]*k]); } } } cout<<dp[n]<<endl; } }
最新回复(0)