openmv+PID算法详解

tech2025-02-15  7

openmv官网上讲得太简略了,我是比较好奇算法的,看了一篇讲PID的,讲得很好。

一文读懂PID控制算法(抛弃公式,从原理上真正理解PID控制)

请先理解这篇非常棒的文章。

现在结合openmv提供的代码看看

注释一律在代码下面

先复习一下Δt和dt的关系,下面用得着,别笑,我忘了

from pyb import millis #返回代码执行到当前的时间 from math import pi, isnan #pi-->Π,isnan-->用于检查给定数字是否为“ NaN” (不是数字),它接受一个数字,如果给定数字为“ NaN” ,则返回True ,否则返回False 。 class PID: #PID(proportion integration differentiation) # 比例 积分 微分 _kp = _ki = _kd = _integrator = _imax = 0 #初始化三个系数,积分,???为0 _last_error = _last_derivative = _last_t = 0 # 最新差值 最新导数 上个轮回的时间 _RC = 1/(2 * pi * 20) #??? def __init__(self, p=0, i=0, d=0, imax=0): self._kp = float(p) self._ki = float(i) self._kd = float(d) self._imax = abs(imax) self._last_derivative = float('nan') #设置微分为nan def get_pid(self, error, scaler): #根据差值,K获取pid tnow = millis() #现在的时间 dt = tnow - self._last_t #和上次的时间差 output = 0 #总输出(你调节的量) if self._last_t == 0 or dt > 1000: #如果是第一个轮回(初始值为0)或时间差>1s(大于可微积分的阈值) dt = 0 #时间差归零 self.reset_I() #重置I self._last_t = tnow #记录结束时间 delta_time = float(dt) / float(1000) #获取Δt output += error * self._kp #加入比例控制积分 if abs(self._kd) > 0 and dt > 0: #若微分参数和时间差>0 if isnan(self._last_derivative): #若微分是NaN derivative = 0 #微分归零 self._last_derivative = 0 #PS:前面已经声明为nan,所以openmv没有用微分控制 else: #否则 derivative = (error - self._last_error) / delta_time #微分为:(这次的差距-上次的差距)/时间差 derivative = self._last_derivative + \ ((delta_time / (self._RC + delta_time)) * \ (derivative - self._last_derivative)) #这三行我不懂,怎么会有这种代码在这里。。。??? self._last_error = error #更新差值 self._last_derivative = derivative #更新积分值 output += self._kd * derivative #加入微分控制 output *= scaler #乘以总系数 if abs(self._ki) > 0 and dt > 0: #若I参数>0 self._integrator += (error * self._ki) * scaler * delta_time #计算积分控制 if self._integrator < -self._imax: self._integrator = -self._imax elif self._integrator > self._imax: self._integrator = self._imax #积分大于等于设定最大值时 output += self._integrator #加入积分控制 return output def reset_I(self): //重置I self._integrator = 0 self._last_derivative = float('nan')

好像还是有点看不懂,看看openmv是怎么用的。

x.y轴分布

# Blob Detection Example # # This example shows off how to use the find_blobs function to find color # blobs in the image. This example in particular looks for dark green objects. import sensor, image, time import car from pid import PID # You may need to tweak the above settings for tracking green things... # Select an area in the Framebuffer to copy the color settings. sensor.reset() # Initialize the camera sensor. sensor.set_pixformat(sensor.RGB565) # use RGB565. sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed. sensor.skip_frames(10) # Let new settings take affect. sensor.set_auto_whitebal(False) # turn this off. clock = time.clock() # Tracks FPS. # For color tracking to work really well you should ideally be in a very, very, # very, controlled enviroment where the lighting is constant... green_threshold = (76, 96, -110, -30, 8, 66) size_threshold = 2000 x_pid = PID(p=0.5, i=1, imax=100) #1.位置的pid调节 h_pid = PID(p=0.05, i=0.1, imax=50) #2.大小的pid def find_max(blobs): max_size=0 for blob in blobs: if blob[2]*blob[3] > max_size: max_blob=blob max_size = blob[2]*blob[3] return max_blob while(True): clock.tick() # Track elapsed milliseconds between snapshots(). img = sensor.snapshot() # Take a picture and return the image. blobs = img.find_blobs([green_threshold]) if blobs: max_blob = find_max(blobs) x_error = max_blob[5]-img.width()/2 #球心x减去一半宽度-->距离中心点的差值(以中间为0,左-右+) h_error = max_blob[2]*max_blob[3]-size_threshold #距离设定大小的差值(远-近+) print("x error: ", x_error) ''' for b in blobs: # Draw a rect around the blob. img.draw_rectangle(b[0:4]) # rect img.draw_cross(b[5], b[6]) # cx, cy ''' img.draw_rectangle(max_blob[0:4]) # rect img.draw_cross(max_blob[5], max_blob[6]) # cx, cy x_output=x_pid.get_pid(x_error,1) #调整位置 h_output=h_pid.get_pid(h_error,1) #调整距离 print("h_output",h_output) car.run(-h_output-x_output,-h_output+x_output) #run 我不展示了,第一个是左侧速度,第二个是右侧速度 #与小车远离成正比,左侧与偏左成正比,右侧与偏右成正比 #这里我感觉左右是反的,想了好久好久,直到我看到视屏里的openmv是倒置的23333 #也就是摄像头左右对调,那就对了。。。 else: car.run(18,-18)

还有不明白,希望有人告诉我,其他的不懂可以留言,说的不好还请指正。

最新回复(0)