LeetCode刷题笔记

tech2025-03-03  8

题目出自LeetCode

84. 柱状图中最大的矩形

其他题解或源码可以访问: tongji4m3

描述

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

示例:

输入: [2,1,5,6,2,3] 输出: 10

思路

整体思路是最大矩形是遍历一遍数组,分别查看以索引i为高度所形成的矩形,取他们的最大值

维护一个递增序列。当遇到一个递减的元素,前面比他高的元素所能形成的矩形已经确定了,即可计算出来。然后继续,直到遍历完数组,此时有一个递增序列。

对于这个序列中的某个元素nums[i],他的右边界是数组最后一个元素,左边界是下一个栈元素+1(画图出来考虑)

liweiwei1419的解法

Stack<Integer> stack;//递增序列 存储的是索引下标 for i in N { //nums[stack.top()]=nums[i]的要留下,因为前面的元素还可以继续扩展 while(!stack.isEmpty() && nums[stack.top()]>nums[i]) { //这里计算的是以弹出那个元素为高度的最大矩形 int index=stack.pop(); result=max(result,(i-index)*nums[index]); } stack.push(i);//此时为递增序列 } //对递增序列进行计算 //这些元素每一个都可以扩展到数组尽头 while(!stack.isEmpty()) { //范围是[ stack.top()+1 , N-1 ] int index=stack.pop(); result=max(result,(N-stack.top()-1)*nums[index]); }

细节

stack底部用一个-1标识,不然计算索引为0的元素的左边界有问题注意左边界的计算不能直接为索引i(因为要注意左边比他高的被忽略而不在栈中的元素)注意计算的都是以该索引位置的值为高,他左右两边能扩展的最大距离为宽

代码

public int largestRectangleArea(int[] heights) { //递增序列 存储的是索引下标 Stack<Integer> stack = new Stack<>(); int result = 0; int n = heights.length; //防止最左边元素计算不了面积 stack.push(-1); for (int i = 0; i < n; i++) { //heights[stack.top()]=heights[i]的要留下,因为前面的元素还可以继续扩展 while (stack.peek() != -1 && heights[stack.peek()] > heights[i]) { //这里计算的是以弹出那个元素为高度的最大矩形 int index = stack.pop(); //look 这里也要按照下面的思路,即该元素的左边界是stack.top()+1 而不能仅仅是(i - index) * heights[index] result = Math.max(result, (i - stack.peek() - 1) * heights[index]); } //此时为递增序列 stack.push(i); } //对递增序列进行计算 //这些元素每一个都可以扩展到数组尽头 while (stack.peek() != -1) { //范围是[ stack.top()+1 , N-1 ] int index = stack.pop(); result = Math.max(result, (n - stack.peek() - 1) * heights[index]); } return result; }

复杂度分析

时间复杂度

O ( N ) O(N) O(N)

空间复杂度

O ( N ) O(N) O(N)

最新回复(0)