点击上方蓝字关注我吧!
本篇文章大概6457字,阅读时间大约17分钟
Flume作为一个数据接入组件,广泛应用于Hadoop生态中。在业务时间混乱的情况下,按照机器数据在HDFS上分区会降低ETL的效率。采用Flume自定义拦截器可以实现按照事件时间Sink到HDFS目录,以应对数据的事件时间混乱问题
1
文档编写目的
Flume自定义拦截器的开发和测试,应对日志事件时间混乱问题
CDH5.16.2
2
组件介绍
Flume是一个分布式、高可靠、高可用的海量日志采集、聚合、传输系统
Agent是一个JVM进程,控制Event从source到sink。
Source数据源,负责数据接收
Channel位于Source和Sink之间的buffer。Channel是线程安全的,可以同步处理多个source的写操作和多个sink的读操作
Memory Channel基于内存,效率高,但在agent挂掉,重启等可能会有数据丢失
File Channel基于磁盘,效率较低,不会丢数据
Sink不断轮询Channel的事件且批量拉取,并将这些Event写入外部系统。Sink具有事务,在从Channel批量删除数据之前,每个Sink用Channel启动一个事务。批量事件一旦成功写出,sink就会进行事务提交。事务提交后,Channel从buffer中移除这批Event
Event是Flume定义的一个数据流传输的最小单位
Flume支持使用拦截器在运行时对event进行修改或丢弃
Flume支持链式的拦截器执行方式,在配置文件里面配置多个拦截器,拦截器的执行顺序取决于它们配置的顺序,Event按照顺序经过每一个拦截器
3
Flume自定义拦截器实战
在物联网的场景中,存在网络信号不佳,这时设备不会把数据传输到云平台上,而是放置在本地存储中,等待下一个开机,网络信号良好的情况下,将数据上传,造成了事件时间和平台接收时间存在跨天的情况,甚至由于设备本地时钟混乱,获取不到正确的事件时间,产生无效数据。
设备的数据上传后会进入kafka中,采用Flume拉取kafka的数据sink到HDFS接入Hive外部表进行离线分析,这里就需要使用Flume自定义拦截器按照事件时间将kafka中的数据sink到按天分区的不同的HDFS目录
这里使用样例数据代替真实数据,样例数据如下:
2020-08-20 11:56:02.557 [main] INFO com.AppStart - {"app_active":{"name":"app_active","json":{"entry":"1","action":"1","error_code":"0"},"time":1595312507640},"attr":{"area":"石嘴山","uid":"2F10092A99995","app_v":"1.1.4","event_type":"common","device_id":"1FB872-9A10099995","os_type":"0.87","channel":"XO","language":"chinese","brand":"Huawei-0"}} 2020-08-20 11:56:02.557 [main] INFO com.AppStart - {"app_active":{"name":"app_active","json":{"entry":"1","action":"0","error_code":"0"},"time":1595312539940},"attr":{"area":"九江","uid":"2F10092A99996","app_v":"1.1.5","event_type":"common","device_id":"1FB872-9A10099996","os_type":"9.0","channel":"PU","language":"chinese","brand":"xiaomi-9"}}自定义Flume拦截器主要就是需要实现flume的Interceptor接口,核心方法是重写intercept方法
public interface Interceptor { /** * Any initialization / startup needed by the Interceptor. */ public void initialize(); /** * Interception of a single {@link Event}. * @param event Event to be intercepted * @return Original or modified event, or {@code null} if the Event * is to be dropped (i.e. filtered out). */ public Event intercept(Event event); /** * Interception of a batch of {@linkplain Event events}. * @param events Input list of events * @return Output list of events. The size of output list MUST NOT BE GREATER * than the size of the input list (i.e. transformation and removal ONLY). * Also, this method MUST NOT return {@code null}. If all events are dropped, * then an empty List is returned. */ public List<Event> intercept(List<Event> events); /** * Perform any closing / shutdown needed by the Interceptor. */ public void close(); /** Builder implementations MUST have a no-arg constructor */ public interface Builder extends Configurable { public Interceptor build(); } }根据事件时间分区的原理就是,将设备中的事件时间解析出来,作为一个属性put到event的header中,然后在Flume的HDFS Sink配置中指定header中put的属性,代码实现如下:
/** * 物联网的部分数据会保存在边缘设备上,直到下次开机进行上传,因此在用flume进行数据搜集的时候会存在补发的问题 * 落分区应该按照事件时间而不是flume主机的时间 * 事件时间拦截器则是为了应对以上场景 * @author Eights */ public class EventTimeInterceptor implements Interceptor { private static FastDateFormat dateFormat = FastDateFormat.getInstance("yyyy-MM-dd"); @Override public void initialize() { } @Override public Event intercept(Event event) { //获取header Map<String, String> headers = event.getHeaders(); //获取body String eventBody = new String(event.getBody(), StandardCharsets.UTF_8); String[] bodyArr = eventBody.split("\\s+"); try { String jsonStr = bodyArr[6]; //数据为空,返回null if (Strings.isNullOrEmpty(jsonStr)) { return null; } long ts = Long.parseLong(JSON.parseObject(jsonStr).getJSONObject("app_active").getString("time")); //打上事件日期 String eventDate = dateFormat.format(ts); //header中添加event date headers.put("eventDate", eventDate); event.setHeaders(headers); } catch (Exception e) { //脏数据,需要sink到一个目录进行核查 headers.put("eventDate", "unknow"); event.setHeaders(headers); } return event; } @Override public List<Event> intercept(List<Event> list) { return list.stream().map(this::intercept) .filter(Objects::nonNull) .collect(Collectors.toList()); } @Override public void close() { } public static class Builder implements Interceptor.Builder { @Override public Interceptor build() { return new EventTimeInterceptor(); } @Override public void configure(Context context) { } } } # pom文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.eights</groupId> <artifactId>flume-ng-interceptors</artifactId> <version>1.0-SNAPSHOT</version> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <compiler.version>1.8</compiler.version> <flume.version>1.9.0</flume.version> <fastjson.version>1.2.73</fastjson.version> </properties> <dependencies> <dependency> <groupId>org.apache.flume</groupId> <artifactId>flume-ng-core</artifactId> <version>${flume.version}</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>${fastjson.version}</version> </dependency> </dependencies> <build> <plugins> <plugin> <artifactId>maven-compiler-plugin</artifactId> <version>2.3.2</version> <configuration> <source>${compiler.version}</source> <target>${compiler.version}</target> </configuration> </plugin> <plugin> <artifactId>maven-assembly-plugin</artifactId> <configuration> <descriptorRefs> <descriptorRef>jar-with-dependencies</descriptorRef> </descriptorRefs> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> </plugins> </build> </project>代码开发完成后,打包放在flume的lib目录下
CDH集群放在/opt/cloudera/parcels/CDH/lib/flume-ng/lib,注意每个agent节点都需要配置
4
功能测试
将机器上的日志,通过flume sink到hdfs目录上,观察是否根据事件时间生成目录,Flume配置如下
a1.sources = r1 a1.sinks = k1 a1.channels = c1 # source a1.sources.r1.type = TAILDIR a1.sources.r1.positionFile =/u01/sample_data/conf/startlog_position.json a1.sources.r1.filegroups = f1 a1.sources.r1.filegroups.f1 = /u01/sample_data/middlelog/.*log a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = com.eights.EventTimeInterceptor$Builder # memorychannel a1.channels.c1.type = memory a1.channels.c1.capacity = 100000 a1.channels.c1.transactionCapacity = 2000 # sink a1.sinks.k1.type = hdfs a1.sinks.k1.hdfs.path =/ext-data/start-log/dt=%{eventDate}/ a1.sinks.k1.hdfs.filePrefix = startlog a1.sinks.k1.hdfs.rollSize = 33554432 a1.sinks.k1.hdfs.rollCount = 0 a1.sinks.k1.hdfs.rollInterval = 0 a1.sinks.k1.hdfs.idleTimeout = 0 a1.sinks.k1.hdfs.minBlockReplicas = 1 a1.sinks.k1.hdfs.batchSize = 1000 a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1启动flume agent,发现hdfs sink目录按照事件时间正确创建
检查HDFS目录,flume自定义拦截器按照事件时间接入HDFS完成
5
总结
在未使用Flume拦截器的时候,会在数仓层面对昨天入库的数据,先按照事件时间进行重分区在做ETL,采用自定义拦截器的方式,可以直接将事件时间分区操作提前,提升数仓ETL的效率。
扫码二维码
获取更多精彩
Eights
点个在看吧~