全连接层的张量实现----单层神经网络的实现
 
定义好权值张量𝑾和偏置张量𝒃批量矩阵相乘函数 tf.matmul()即可完成网络层的计算偏置向量𝒃与计算完𝑿@𝑾的相加将结果传入激活函数 
import tensorflow 
as tf
x 
= tf
.random
.normal
([2,567])
w1 
= tf
.Variable
(tf
.random
.truncated_normal
([567,250],stddev
=0.5))
b1 
= tf
.zeros
([250])
o1 
= tf
.matmul
(x
,w1
)+b1  
o1 
= tf
.nn
.relu
(o1
)  
print(o1
)
out
:
tf
.Tensor
(
[[ 0.          5.6923637   0.          0.          5.924873    6.430141
   1.0681016  22.66217     2.931157    0.          0.         12.744288
   0.         23.959446   15.1364975  14.34301     0.          1.439672
   6.699648    3.8294516   0.          0.          0.          0.02968955
   0.         29.599365    3.4065924   0.          0.          0.
  16.701733    4.3234434   0.          2.4895988  24.911697    0.
   1.3113308   0.          0.         17.62508     0.          0.83378553
   0.          0.          0.         17.487988   10.510666    3.2711444
   0.          0.          0.          0.          2.8857956   7.578166
   6.4026513   0.          0.         15.8455      7.128825    2.867275
   0.         11.406243    0.          0.          7.3629208   0.
   0.          0.          0.         18.267078    0.          0.
   0.         11.843224   18.811085    0.          0.7894125  17.675303
   6.381042    0.          0.          0.90418094  0.3319425   4.561783
  20.457237    0.          0.          0.          2.025149    9.29306
   0.          0.          0.          1.4207561   0.         11.575405
   0.          0.          0.          0.          0.          9.340631
   2.9096978   2.915633    0.          4.264126    0.          0.
   3.499099   10.030045    6.4256363   5.4497538   0.          0.
   0.          9.498019    0.          0.          0.          3.46416
   0.          1.7147312   0.          2.074488   11.75713     0.
   0.         11.769547    0.          0.9206114  27.530376    1.5469017
  13.124647    0.35898685  9.134467    6.418855    0.         12.321739
  18.213778    5.8426123   0.         15.616054   13.56566    10.221371
   0.5425372   0.          4.1035767   0.          6.5984387  18.210154
  12.665659    2.4419503   3.4360933   4.824207   13.430967    0.
   0.          0.          0.         18.075436    0.          0.9268236
   6.993668    0.          0.28516054  2.6081998   0.          0.
   0.          0.          0.          0.          4.204358    5.167027
   0.          1.1935129   2.8025086   0.          0.6381178   0.
   0.          0.          0.          0.         15.845655   18.041857
   0.          0.          6.383477    8.501418   17.152485    0.
   2.0526805   0.          0.          0.         17.907549    0.
   0.          5.7903147   0.         13.597157    0.          0.
   1.641685    0.          8.30833     3.2230053   0.          0.
   8.802971    0.          0.          0.          0.          0.
   0.          0.          0.          0.          0.          2.9737372
   8.685434   17.858145    0.49902278  2.244833    0.          1.5718412
   5.4440613   0.         16.20961     4.716572   16.234251    0.
   7.8437977   0.          6.2740684   0.          5.991658    5.795619
   0.          0.          0.          0.          8.170209    5.4254475
   2.9483936   6.7834206   8.562119    0.        ]
 [ 0.          0.          9.827619    0.          0.         11.907226
   7.934566    6.047997   10.834481    9.254445    4.593179    5.8291845
   9.88936    11.618725    0.          0.          0.          6.091893
   2.1074784   0.          0.          0.          0.          0.
   0.          0.55824566  7.6742063   2.133997    0.         12.604022
   4.1145587  14.468975    5.0262456   4.389586    0.          0.
  14.072462    0.          2.8475811   5.4412966   3.3362398   9.0758915
   4.297921    2.6291656   7.007786    0.          6.421891   16.863476
   0.          0.          0.          0.1655035  11.46364     7.319919
   9.231743    0.          0.          0.5708244  14.170641    8.481859
  18.731842    9.157413    2.8565936   6.4770727   0.          0.
  18.450764    1.717516    4.903287    1.5349118   0.          2.135833
  25.030903    0.         22.240208    0.          0.          7.4653773
   0.          0.         18.829258    3.2901583   4.663457    0.
   3.6319869  12.821178    4.061035    0.          0.          0.
   0.          7.68061    14.44763     0.          2.9567814   0.
   6.9502516   0.          0.          0.          0.          0.
   1.0752095   8.577261    0.          0.          0.          0.
  15.774179   11.008202    2.6374032   8.135115   13.102028    1.7548213
   0.          0.          1.7659788   0.          0.51686954  7.1937895
   0.          0.          0.          0.          0.          0.
   0.          5.2338986   0.          0.          0.          0.
   0.          0.          8.602976    1.8720741   0.          0.5666175
   0.          0.          3.6209924   2.4786031   0.          0.
   2.88995     5.0474663   0.          2.6065469  18.16195     7.4969788
   5.227219    9.725359    2.9107327  12.853128    0.         17.645288
  12.918257    0.          0.          0.          0.         10.962885
   0.          3.4822338  11.727208    0.          0.          0.9324732
   4.886016    4.829459    7.7510967  13.661399    1.1002091   0.
   0.          6.2028437   0.          0.         15.42531     0.73701906
   0.          0.          2.587556    0.         13.945081   13.631976
  25.053593    0.          0.          7.565555   13.155384    3.5761912
   0.          0.          0.          0.          0.          3.1220303
   0.          0.          0.          8.0910225   0.          0.
   0.          0.          8.924197    0.          0.          0.
   0.          0.          8.213308    1.965143    0.         11.267947
   8.109399    0.          0.          2.2391272   0.          0.
   0.          0.          0.          0.          0.          0.
   6.3063564   0.          0.          0.         12.160679    5.7818184
   0.          9.530418   15.926281    0.          6.8691816   1.3507385
  15.85659    13.0173025   3.3913822   0.          0.          0.
  22.77712     5.178497    0.         21.299566  ]], shape
=(2, 250), dtype
=float32
)
                
                
                
        
    
转载请注明原文地址:https://tech.qufami.com/read-23599.html