(15)tensorflow全连接层的张量实现

tech2025-08-12  14

全连接层的张量实现----单层神经网络的实现

定义好权值张量𝑾和偏置张量𝒃批量矩阵相乘函数 tf.matmul()即可完成网络层的计算偏置向量𝒃与计算完𝑿@𝑾的相加将结果传入激活函数 import tensorflow as tf x = tf.random.normal([2,567])#模拟2个样本,567个特征 w1 = tf.Variable(tf.random.truncated_normal([567,250],stddev=0.5))#初始化W,b b1 = tf.zeros([250]) o1 = tf.matmul(x,w1)+b1 #计算X@W+b o1 = tf.nn.relu(o1) #激活函数 print(o1) out: tf.Tensor( [[ 0. 5.6923637 0. 0. 5.924873 6.430141 1.0681016 22.66217 2.931157 0. 0. 12.744288 0. 23.959446 15.1364975 14.34301 0. 1.439672 6.699648 3.8294516 0. 0. 0. 0.02968955 0. 29.599365 3.4065924 0. 0. 0. 16.701733 4.3234434 0. 2.4895988 24.911697 0. 1.3113308 0. 0. 17.62508 0. 0.83378553 0. 0. 0. 17.487988 10.510666 3.2711444 0. 0. 0. 0. 2.8857956 7.578166 6.4026513 0. 0. 15.8455 7.128825 2.867275 0. 11.406243 0. 0. 7.3629208 0. 0. 0. 0. 18.267078 0. 0. 0. 11.843224 18.811085 0. 0.7894125 17.675303 6.381042 0. 0. 0.90418094 0.3319425 4.561783 20.457237 0. 0. 0. 2.025149 9.29306 0. 0. 0. 1.4207561 0. 11.575405 0. 0. 0. 0. 0. 9.340631 2.9096978 2.915633 0. 4.264126 0. 0. 3.499099 10.030045 6.4256363 5.4497538 0. 0. 0. 9.498019 0. 0. 0. 3.46416 0. 1.7147312 0. 2.074488 11.75713 0. 0. 11.769547 0. 0.9206114 27.530376 1.5469017 13.124647 0.35898685 9.134467 6.418855 0. 12.321739 18.213778 5.8426123 0. 15.616054 13.56566 10.221371 0.5425372 0. 4.1035767 0. 6.5984387 18.210154 12.665659 2.4419503 3.4360933 4.824207 13.430967 0. 0. 0. 0. 18.075436 0. 0.9268236 6.993668 0. 0.28516054 2.6081998 0. 0. 0. 0. 0. 0. 4.204358 5.167027 0. 1.1935129 2.8025086 0. 0.6381178 0. 0. 0. 0. 0. 15.845655 18.041857 0. 0. 6.383477 8.501418 17.152485 0. 2.0526805 0. 0. 0. 17.907549 0. 0. 5.7903147 0. 13.597157 0. 0. 1.641685 0. 8.30833 3.2230053 0. 0. 8.802971 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.9737372 8.685434 17.858145 0.49902278 2.244833 0. 1.5718412 5.4440613 0. 16.20961 4.716572 16.234251 0. 7.8437977 0. 6.2740684 0. 5.991658 5.795619 0. 0. 0. 0. 8.170209 5.4254475 2.9483936 6.7834206 8.562119 0. ] [ 0. 0. 9.827619 0. 0. 11.907226 7.934566 6.047997 10.834481 9.254445 4.593179 5.8291845 9.88936 11.618725 0. 0. 0. 6.091893 2.1074784 0. 0. 0. 0. 0. 0. 0.55824566 7.6742063 2.133997 0. 12.604022 4.1145587 14.468975 5.0262456 4.389586 0. 0. 14.072462 0. 2.8475811 5.4412966 3.3362398 9.0758915 4.297921 2.6291656 7.007786 0. 6.421891 16.863476 0. 0. 0. 0.1655035 11.46364 7.319919 9.231743 0. 0. 0.5708244 14.170641 8.481859 18.731842 9.157413 2.8565936 6.4770727 0. 0. 18.450764 1.717516 4.903287 1.5349118 0. 2.135833 25.030903 0. 22.240208 0. 0. 7.4653773 0. 0. 18.829258 3.2901583 4.663457 0. 3.6319869 12.821178 4.061035 0. 0. 0. 0. 7.68061 14.44763 0. 2.9567814 0. 6.9502516 0. 0. 0. 0. 0. 1.0752095 8.577261 0. 0. 0. 0. 15.774179 11.008202 2.6374032 8.135115 13.102028 1.7548213 0. 0. 1.7659788 0. 0.51686954 7.1937895 0. 0. 0. 0. 0. 0. 0. 5.2338986 0. 0. 0. 0. 0. 0. 8.602976 1.8720741 0. 0.5666175 0. 0. 3.6209924 2.4786031 0. 0. 2.88995 5.0474663 0. 2.6065469 18.16195 7.4969788 5.227219 9.725359 2.9107327 12.853128 0. 17.645288 12.918257 0. 0. 0. 0. 10.962885 0. 3.4822338 11.727208 0. 0. 0.9324732 4.886016 4.829459 7.7510967 13.661399 1.1002091 0. 0. 6.2028437 0. 0. 15.42531 0.73701906 0. 0. 2.587556 0. 13.945081 13.631976 25.053593 0. 0. 7.565555 13.155384 3.5761912 0. 0. 0. 0. 0. 3.1220303 0. 0. 0. 8.0910225 0. 0. 0. 0. 8.924197 0. 0. 0. 0. 0. 8.213308 1.965143 0. 11.267947 8.109399 0. 0. 2.2391272 0. 0. 0. 0. 0. 0. 0. 0. 6.3063564 0. 0. 0. 12.160679 5.7818184 0. 9.530418 15.926281 0. 6.8691816 1.3507385 15.85659 13.0173025 3.3913822 0. 0. 0. 22.77712 5.178497 0. 21.299566 ]], shape=(2, 250), dtype=float32)
最新回复(0)