构建我的classification框架记录
参考CV综述目标检测整理—目录
参考CV综述图像分割整理—目录
OCR文字识别实战 TextDetection文本检测数据集汇总
论文: 源码: 特点:
论文: Detecting Text in Natural Image with Connectionist Text Proposal Network@2016 源码: 参考博客: OCR技术(CTPN,SegLink,EAST文本检测)
特点:
connect proposalsSide-refinement检测小框代替直接检测大文本框对于非水平的文本的检测效果并不好论文: EAST: An Efficient and Accurate Scene Text Detector@20170710 源码: argman/EAST --tensorflow /flask 参考博客: OCR文本检测模型—EAST PVANET算法笔记
less channels with more layers论文:PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection @20160930特点:
提出了基于two-stage的文本检测方法:全卷积网络(FCN)和非极大值抑制(NMS)在检测长文本时的效果比较差,这主要是由于网络的感受野不够大;在检测曲线文本时,效果不是很理想论文: Shape Robust Text Detection with Progressive Scale Expansion Network 源码: tensorflow_PSENet 参考博客: psenet解读 PSENet原理介绍
特点:
psenet作为一种基于分割的方法psenet的检测速度稍慢论文: Real-time Scene Text Detection with Differentiable Binarization 源码:
参考博客: 《DB:Real-time Scene Text Detection with Differentiable Binarization》论文笔记
特点:
论文: An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition @20150721 源码: meijieru/crnn.pytorch 特点:
每次都要计算概率,速度慢end to end识别参考博客 CRNN算法详解
attention_ocr