强化学习(第二版)Sutton - 习题答案和解析
第二章2.12.22.32.42.62.72.82.92.102.5 & 2.11
强烈建议大家参考这位大佬的答案和解析,还有代码!!!
强化学习答案(第二版)
第二章
2.1
Q:在
ϵ
\epsilon
ϵ贪心动作选择中,在有两个动作及
ϵ
=
0.5
\epsilon=0.5
ϵ=0.5的情况下,贪心动作被选择的概率是多少?
A:0.5的概率选择开发(exploitation),选择贪心动作,0.5的概率选择试探(exploration),试探时有0.5的概率选择贪心动作,所有是
0.5
+
0.5
∗
0.5
=
0.75
0.5+0.5*0.5=0.75
0.5+0.5∗0.5=0.75
2.2
Q:赌博机的例子 考虑一个
k
=
4
k=4
k=4的多臂赌博机问题,记做
1
,
2
,
3
,
4
1,2,3,4
1,2,3,4。 将一个赌博机算法应用与这个问题,算法使用
ϵ
−
ϵ-
ϵ−贪心动作选择,基于采样平均的动作价值估计,初始估计为
Q
1
(
a
)
=
0
,
∀
a
Q_1(a)=0, \forall a
Q1(a)=0,∀a。假设动作及收益的最初顺序是
A
1
=
1
,
R
1
=
−
1
,
A
2
=
2
,
R
2
=
1
,
A
3
=
2
,
R
3
=
−
2
,
A
4
=
2
,
R
4
=
2
,
A
5
=
3
,
R
5
=
0
A_1=1,R_1=-1,A_2=2, R_2=1,A_3=2,R_3=-2,A_4=2, R_4=2,A_5=3,R_5=0
A1=1,R1=−1,A2=2,R2=1,A3=2,R3=−2,A4=2,R4=2,A5=3,R5=0。在其中的某些案例中可能发生了
ϵ
ϵ
ϵ的情形导致一个动作被随机选择。请回答,在哪些时刻中这种情形肯定发生了?在哪些时刻中这些情形可能发生了?
参考:https://github.com/borninfreedom/rlai-exercises/blob/master/Chapter%202/Exercise%202.2.md
2.3
Q:在图2.2所示的比较中,从累积收益和选择最佳动作的可能性的角度考虑,哪种方法会在长期表现最好?好多少?定量地表达你的答案。
A1:选择最优动作的概率是99.1%和91%,因为当进行试探的时候,也有可能选择最优的动作。 即
(
1
−
0.01
)
+
0.01
∗
1
/
10
=
99.1
(1-0.01)+0.01*1/10=99.1%
(1−0.01)+0.01∗1/10=99.1 和
(
1
−
0.1
)
+
0.1
∗
1
/
10
=
91
(1-0.1)+0.1*1/10=91%
(1−0.1)+0.1∗1/10=91. (because there are 10-armed bandits, so there is a 1/10). — answer from PiggyCh
A2:
2.4
2.6
Q:神秘的尖峰 图2.3中展示的结果应该是相当可靠的,因为他们是2000个独立随机的10臂赌博机任务的平均值。那么为什么乐观初始化方法在曲线的早期会出现振荡和峰值呢?换句话说,是什么使得这种方法在特定的早期步骤中表现的特别好或更糟?
A:在第10步训练步数之后的某点,智能体将会找到最优的动作值。它将会贪心的选择这个值。小的步长参数意味着对最优值的估计将会很慢的收敛到真值。看起来这个真值小于5。这意味着因为小的步长,次优的动作仍然会有一个接近于5的价值。因此,在某些点,智能体开始不断的选择次优动作。
2.7
2.8
Q:USB尖峰 在图2.4中,UCB算法的表现在第11步的时候有一个非常明显的尖峰。为什么会产生这个尖峰呢?请注意,你必须同时解释为什么收益在第11步时会增加,以及为什么在后续的若干步中会减少,你的答案才是令人满意的。提示如果
c
=
1
c=1
c=1,那么这个尖峰就不会那么突出了
2.9
Q:证明在两种动作的情况下,softmax分布与通常在统计学和人工神经网络中使用的logistic或sigmoid函数给出的结果相同
2.10
2.5 & 2.11
import matplotlib
import matplotlib
.pyplot
as plt
import numpy
as np
from tqdm
import trange
matplotlib
.use
('Agg')
class Bandit:
def __init__(self
, k_arm
=10, epsilon
=0., initial
=0., step_size
=0.1, sample_averages
=False, UCB_param
=None,
gradient
=False, gradient_baseline
=False, true_reward
=0.):
self
.k
= k_arm
self
.step_size
= step_size
self
.sample_averages
= sample_averages
self
.indices
= np
.arange
(self
.k
)
self
.time
= 0
self
.UCB_param
= UCB_param
self
.gradient
= gradient
self
.gradient_baseline
= gradient_baseline
self
.average_reward
= 0
self
.true_reward
= true_reward
self
.epsilon
= epsilon
self
.initial
= initial
def reset(self
):
self
.q_true
= np
.random
.randn
(self
.k
) + self
.true_reward
self
.q_estimation
= np
.zeros
(self
.k
) + self
.initial
self
.action_count
= np
.zeros
(self
.k
)
self
.best_action
= np
.argmax
(self
.q_true
)
self
.time
= 0
def act(self
):
if np
.random
.rand
() < self
.epsilon
:
return np
.random
.choice
(self
.indices
)
if self
.UCB_param
is not None:
UCB_estimation
= self
.q_estimation
+ \
self
.UCB_param
* np
.sqrt
(np
.log
(self
.time
+ 1) / (self
.action_count
+ 1e-5))
q_best
= np
.max(UCB_estimation
)
return np
.random
.choice
(np
.where
(UCB_estimation
== q_best
)[0])
if self
.gradient
:
exp_est
= np
.exp
(self
.q_estimation
)
self
.action_prob
= exp_est
/ np
.sum(exp_est
)
return np
.random
.choice
(self
.indices
, p
=self
.action_prob
)
q_best
= np
.max(self
.q_estimation
)
return np
.random
.choice
(np
.where
(self
.q_estimation
== q_best
)[0])
def step(self
, action
):
reward
= np
.random
.randn
() + self
.q_true
[action
]
self
.time
+= 1
self
.action_count
[action
] += 1
self
.average_reward
+= (reward
- self
.average_reward
) / self
.time
if self
.sample_averages
:
self
.q_estimation
[action
] += (reward
- self
.q_estimation
[action
]) / self
.action_count
[action
]
elif self
.gradient
:
one_hot
= np
.zeros
(self
.k
)
one_hot
[action
] = 1
if self
.gradient_baseline
:
baseline
= self
.average_reward
else:
baseline
= 0
self
.q_estimation
+= self
.step_size
* (reward
- baseline
) * (one_hot
- self
.action_prob
)
else:
self
.q_estimation
[action
] += self
.step_size
* (reward
- self
.q_estimation
[action
])
return reward
def simulate(runs
, time
, bandits
):
rewards
= np
.zeros
((len(bandits
), runs
, time
))
best_action_counts
= np
.zeros
(rewards
.shape
)
for i
, bandit
in enumerate(bandits
):
for r
in trange
(runs
):
bandit
.reset
()
for t
in range(time
):
action
= bandit
.act
()
reward
= bandit
.step
(action
)
rewards
[i
, r
, t
] = reward
if action
== bandit
.best_action
:
best_action_counts
[i
, r
, t
] = 1
mean_best_action_counts
= best_action_counts
.mean
(axis
=1)
mean_rewards
= rewards
.mean
(axis
=1)
return mean_best_action_counts
, mean_rewards
def figure_2_1():
plt
.violinplot
(dataset
=np
.random
.randn
(200, 10) + np
.random
.randn
(10))
plt
.xlabel
("Action")
plt
.ylabel
("Reward distribution")
plt
.savefig
('../images/figure_2_1.png')
plt
.close
()
def figure_2_2(runs
=2000, time
=1000):
epsilons
= [0, 0.1, 0.01]
bandits
= [Bandit
(epsilon
=eps
, sample_averages
=True) for eps
in epsilons
]
best_action_counts
, rewards
= simulate
(runs
, time
, bandits
)
plt
.figure
(figsize
=(10, 20))
plt
.subplot
(2, 1, 1)
for eps
, rewards
in zip(epsilons
, rewards
):
plt
.plot
(rewards
, label
='epsilon = %.02f' % (eps
))
plt
.xlabel
('steps')
plt
.ylabel
('average reward')
plt
.legend
()
plt
.subplot
(2, 1, 2)
for eps
, counts
in zip(epsilons
, best_action_counts
):
plt
.plot
(counts
, label
='epsilon = %.02f' % (eps
))
plt
.xlabel
('steps')
plt
.ylabel
('% optimal action')
plt
.legend
()
plt
.savefig
('../images/figure_2_2.png')
plt
.close
()
def figure_2_3(runs
=2000, time
=1000):
bandits
= []
bandits
.append
(Bandit
(epsilon
=0, initial
=5, step_size
=0.1))
bandits
.append
(Bandit
(epsilon
=0.1, initial
=0, step_size
=0.1))
best_action_counts
, _
= simulate
(runs
, time
, bandits
)
plt
.plot
(best_action_counts
[0], label
='epsilon = 0, q = 5')
plt
.plot
(best_action_counts
[1], label
='epsilon = 0.1, q = 0')
plt
.xlabel
('Steps')
plt
.ylabel
('% optimal action')
plt
.legend
()
plt
.savefig
('../images/figure_2_3.png')
plt
.close
()
def figure_2_4(runs
=2000, time
=1000):
bandits
= []
bandits
.append
(Bandit
(epsilon
=0, UCB_param
=2, sample_averages
=True))
bandits
.append
(Bandit
(epsilon
=0.1, sample_averages
=True))
_
, average_rewards
= simulate
(runs
, time
, bandits
)
plt
.plot
(average_rewards
[0], label
='UCB c = 2')
plt
.plot
(average_rewards
[1], label
='epsilon greedy epsilon = 0.1')
plt
.xlabel
('Steps')
plt
.ylabel
('Average reward')
plt
.legend
()
plt
.savefig
('../images/figure_2_4.png')
plt
.close
()
def figure_2_5(runs
=2000, time
=1000):
bandits
= []
bandits
.append
(Bandit
(gradient
=True, step_size
=0.1, gradient_baseline
=True, true_reward
=4))
bandits
.append
(Bandit
(gradient
=True, step_size
=0.1, gradient_baseline
=False, true_reward
=4))
bandits
.append
(Bandit
(gradient
=True, step_size
=0.4, gradient_baseline
=True, true_reward
=4))
bandits
.append
(Bandit
(gradient
=True, step_size
=0.4, gradient_baseline
=False, true_reward
=4))
best_action_counts
, _
= simulate
(runs
, time
, bandits
)
labels
= ['alpha = 0.1, with baseline',
'alpha = 0.1, without baseline',
'alpha = 0.4, with baseline',
'alpha = 0.4, without baseline']
for i
in range(len(bandits
)):
plt
.plot
(best_action_counts
[i
], label
=labels
[i
])
plt
.xlabel
('Steps')
plt
.ylabel
('% Optimal action')
plt
.legend
()
plt
.savefig
('../images/figure_2_5.png')
plt
.close
()
def figure_2_6(runs
=2000, time
=1000):
labels
= ['epsilon-greedy', 'gradient bandit',
'UCB', 'optimistic initialization']
generators
= [lambda epsilon
: Bandit
(epsilon
=epsilon
, sample_averages
=True),
lambda alpha
: Bandit
(gradient
=True, step_size
=alpha
, gradient_baseline
=True),
lambda coef
: Bandit
(epsilon
=0, UCB_param
=coef
, sample_averages
=True),
lambda initial
: Bandit
(epsilon
=0, initial
=initial
, step_size
=0.1)]
parameters
= [np
.arange
(-7, -1, dtype
=np
.float),
np
.arange
(-5, 2, dtype
=np
.float),
np
.arange
(-4, 3, dtype
=np
.float),
np
.arange
(-2, 3, dtype
=np
.float)]
bandits
= []
for generator
, parameter
in zip(generators
, parameters
):
for param
in parameter
:
bandits
.append
(generator
(pow(2, param
)))
_
, average_rewards
= simulate
(runs
, time
, bandits
)
rewards
= np
.mean
(average_rewards
, axis
=1)
i
= 0
for label
, parameter
in zip(labels
, parameters
):
l
= len(parameter
)
plt
.plot
(parameter
, rewards
[i
:i
+l
], label
=label
)
i
+= l
plt
.xlabel
('Parameter(2^x)')
plt
.ylabel
('Average reward')
plt
.legend
()
plt
.savefig
('../images/figure_2_6.png')
plt
.close
()
if __name__
== '__main__':
figure_2_1
()
figure_2_2
()
figure_2_3
()
figure_2_4
()
figure_2_5
()
figure_2_6
()
参考:
https://rs11.xyz/articles/38.htmlhttps://1drv.ms/b/s!AtqFsO4cylhQgooFVAF1GZQuLOLsnA?e=zO3UmEhttps://github.com/borninfreedom/reinforcement-learning-an-introduction/blob/master/chapter02/ten_armed_testbed.py