基于Anaconda下的pytorch的学习,具体安装课参考Anaconda的安装和环境使用,有详细介绍。
附上pytorch官网链接:https://pytorch.org/docs/stable/index.html
下面直接开始
在程序开始的时候固定torch的随机种子,同时也把numpy的随机种子固定。
np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed_all(0) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False如果只需要一张显卡
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')如果需要指定多张显卡,比如0,1号显卡。
import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'也可以在命令行运行代码时设置显卡:
CUDA_VISIBLE_DEVICES=0,1 python train.py清除显存
torch.cuda.empty_cache()也可以使用在命令行重置GPU的指令
nvidia-smi --gpu-reset -i [gpu_id]张量基本信息
tensor = torch.randn(3,4,5) print(tensor.type()) # 数据类型 print(tensor.size()) # 张量的shape,是个元组 print(tensor.dim()) # 维度的数量数据类型转换
# 设置默认类型,pytorch中的FloatTensor远远快于DoubleTensor torch.set_default_tensor_type(torch.FloatTensor) # 类型转换 tensor = tensor.cuda() tensor = tensor.cpu() tensor = tensor.float() tensor = tensor.long()torch.Tensor与np.ndarray转换
ndarray = tensor.cpu().numpy() tensor = torch.from_numpy(ndarray).float() tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.从只包含一个元素的张量中提取值
value = torch.rand(1).item()张量形变
# 在将卷积层输入全连接层的情况下通常需要对张量做形变处理, # 相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。 tensor = torch.rand(2,3,4) shape = (6, 4) tensor = torch.reshape(tensor, shape)打乱顺序
tensor = tensor[torch.randperm(tensor.size(0))] # 打乱第一个维度复制张量
# Operation | New/Shared memory | Still in computation graph | tensor.clone() # | New | Yes | tensor.detach() # | Shared | No | tensor.detach.clone()() # | New | No |张量拼接
''' 注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接, 而torch.stack会新增一维。例如当参数是3个10x5的张量,torch.cat的结果是30x5的张量, 而torch.stack的结果是3x10x5的张量。 ''' tensor = torch.cat(list_of_tensors, dim=0) tensor = torch.stack(list_of_tensors, dim=0)将整数标签转为one-hot编码
# pytorch的标记默认从0开始 tensor = torch.tensor([0, 2, 1, 3]) N = tensor.size(0) num_classes = 4 one_hot = torch.zeros(N, num_classes).long() one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())得到非零元素
torch.nonzero(tensor) # index of non-zero elements torch.nonzero(tensor==0) # index of zero elements torch.nonzero(tensor).size(0) # number of non-zero elements torch.nonzero(tensor == 0).size(0) # number of zero elements判断两个张量相等
torch.allclose(tensor1, tensor2) # float tensor torch.equal(tensor1, tensor2) # int tensor张量扩展
# Expand tensor of shape 64*512 to shape 64*512*7*7. tensor = torch.rand(64,512) torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)矩阵乘法
# Matrix multiplcation: (m*n) * (n*p) * -> (m*p). result = torch.mm(tensor1, tensor2) # Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p) result = torch.bmm(tensor1, tensor2) # Element-wise multiplication. result = tensor1 * tensor2参考:https://zhuanlan.zhihu.com/p/104019160