请参阅我实现的超分辨率算法:
SRGANVDSRCSCNBuild a benckmark like SelfExSR_Code
State-of-the-art algorithms:
基于原始图像块稀疏表示的图像超分辨率
Image super-resolution via sparse representation (TIP2010), Jianchao Yang et al.基于稀疏表示的图像超分辨率
Coupled dictionary training for image super-resolution (TIP2011), Jianchao Yang et al.基于耦合字典训练的图像超分辨率重建
Anchored Neighborhood Regression for Fast Example-Based Super-Resolution (ICCV2013), Radu Timofte et al.
基于邻域快速回归的快速实例超分辨率
A+ [Web]A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution (ACCV2014), Radu Timofte et al.
IA [Web]Seven ways to improve example-based single image super resolution (CVPR2016), Radu Timofte et al.
SelfExSR
Single Image Super-Resolution from Transformed Self-Exemplars (CVPR2015), Jia-Bin Huang et al.NBSRF
Naive Bayes Super-Resolution Forest (ICCV2015), Jordi Salvador et al.朴素贝叶斯超分辨率森林
SRCNN
Image Super-Resolution Using Deep Convolutional Networks (ECCV2014), Chao Dong et al.Image Super-Resolution Using Deep Convolutional Networks (TPAMI2015), Chao Dong et al.CSCN
Deep Networks for Image Super-Resolution with Sparse Prior (ICCV2015), Zhaowen Wang et al.Robust Single Image Super-Resolution via Deep Networks with Sparse Prior (TIP2016), Ding Liu et al.VDSR
Accurate Image Super-Resolution Using Very Deep Convolutional Networks (CVPR2016), Jiwon Kim et al.DRCN
Deeply-Recursive Convolutional Network for Image Super-Resolution (CVPR2016), Jiwon Kim et al.基于深度递归卷积网络的图像超分辨率重建ESPCN
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR2016), Wenzhe Shi et al.基于高效亚像素卷积神经网络的实时单图像和视频超分辨率Is the deconvolution layer the same as a convolutional layer? Checkerboard artifact free sub-pixel convolutionFSRCNN
Acclerating the Super-Resolution Convolutional Neural Network (ECCV2016), Dong Chao et al.LapSRN
Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution (CVPR 2017), Wei-Sheng Lai et al.基于深拉普拉斯金字塔网络的快速和准确的超分辨率EDSR
Enhanced Deep Residual Networks for Single Image Super-Resolution (Winner of NTIRE2017 Super-Resolution Challenge), Bee Lim et al.Perceptual Loss
Perceptual Losses for Real-Time Style Transfer and Super-Resolution (ECCV2016), Justin Johnson et al.基于感知损失的实时风格转移和超分辨率SRGAN
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network (CVPR2017), Christian Ledig et al.基于生成对抗网络的逼真图片的单一图像超分辨率AffGAN
AMORTISED MAP INFERENCE FOR IMAGE SUPER-RESOLUTION (ICLR2017), Casper Kaae Sønderby et al.EnhanceNet
EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis, Mehdi S. M. Sajjadi et al.VESPCN
Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation (CVPR2017), Jose Caballero et al. 来自 https://github.com/huangzehao/Super-Resolution.Benckmark
