*#1. 参数
A simple toy dataset to visualize clustering and classification algorithms. Read more in the User Guide. Parameters n_samples: int or two-element tuple, optional (default=100) If int, the total number of points generated. If two-element tuple, number of points in each of two moons. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise: double or None (default=None) Standard deviation of Gaussian noise added to the data. random_state: int, RandomState instance, default=None Determines random number generation for dataset shuffling and noise. Pass an int for reproducible output across multiple function calls. See Glossary. Returns Xarray of shape [n_samples, 2] The generated samples. yarray of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. 参数说明 n_samples : 样本数,默认100个 shuffle:是否随机打乱, 默认true noise: double 是否添加噪音 random_state: 随机种子,给个int, 每次产生相同随机数。 返回: X : [样本数, 2] y:[样本数], 0,1 example: import numpy as np from sklearn.datasets import make_moons import matplotlib.pyplot as plt # 手动生成一个随机的平面点分布,并画出来 np.random.seed(0) X, y = make_moons(200, noise=0.50) plt.scatter(X[:,0], X[:,1], s=10, c=y, cmap=plt.cm.Spectral) plt.show()