数据结构–图(深度优先遍历和广度优先遍历)(Java)

tech2025-11-15  4

数据结构–图(深度优先遍历和广度优先遍历)(Java)

博客说明

文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢!

图的常用概念

图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。

顶点(vertex)边(edge)路径无向图

有向图

带权图

图的表示方式

图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。

邻接矩阵

邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1....n个点。

邻接表

邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失

邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成

代码实现

package com.guizimo; import java.util.ArrayList; import java.util.Arrays; import java.util.LinkedList; public class Graph { private ArrayList<String> vertexList; private int[][] edges; private int numOfEdges; private boolean[] isVisited; public static void main(String[] args) { int n = 8; String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"}; Graph graph = new Graph(n); for(String vertex: Vertexs) { graph.insertVertex(vertex); } //插入图的节点 graph.insertEdge(0, 1, 1); graph.insertEdge(0, 2, 1); graph.insertEdge(1, 3, 1); graph.insertEdge(1, 4, 1); graph.insertEdge(3, 7, 1); graph.insertEdge(4, 7, 1); graph.insertEdge(2, 5, 1); graph.insertEdge(2, 6, 1); graph.insertEdge(5, 6, 1); //遍历图 graph.showGraph(); System.out.println("广度优先遍历 graph.dfs(); System.out.println("深度优先遍历 graph.bfs(); } public Graph(int n) { edges = new int[n][n]; vertexList = new ArrayList<String>(n); numOfEdges = 0; } public int getFirstNeighbor(int index) { for(int j = 0; j < vertexList.size(); j++) { if(edges[index][j] > 0) { return j; } } return -1; } public int getNextNeighbor(int v1, int v2) { for(int j = v2 + 1; j < vertexList.size(); j++) { if(edges[v1][j] > 0) { return j; } } return -1; } //深度优先遍历 private void dfs(boolean[] isVisited, int i) { System.out.print(getValueByIndex(i) + "->"); isVisited[i] = true; int w = getFirstNeighbor(i); while(w != -1) { if(!isVisited[w]) { dfs(isVisited, w); } w = getNextNeighbor(i, w); } } public void dfs() { isVisited = new boolean[vertexList.size()]; for(int i = 0; i < getNumOfVertex(); i++) { if(!isVisited[i]) { dfs(isVisited, i); } } } //广度优先遍历 private void bfs(boolean[] isVisited, int i) { int u ; int w ; LinkedList queue = new LinkedList(); System.out.print(getValueByIndex(i) + "=>"); isVisited[i] = true; queue.addLast(i); while( !queue.isEmpty()) { u = (Integer)queue.removeFirst(); w = getFirstNeighbor(u); while(w != -1) { if(!isVisited[w]) { System.out.print(getValueByIndex(w) + "=>"); isVisited[w] = true; queue.addLast(w); } w = getNextNeighbor(u, w); } } } public void bfs() { isVisited = new boolean[vertexList.size()]; for(int i = 0; i < getNumOfVertex(); i++) { if(!isVisited[i]) { bfs(isVisited, i); } } } public int getNumOfVertex() { return vertexList.size(); } //遍历 public void showGraph() { for(int[] link : edges) { System.err.println(Arrays.toString(link)); } } public int getNumOfEdges() { return numOfEdges; } public String getValueByIndex(int i) { return vertexList.get(i); } public int getWeight(int v1, int v2) { return edges[v1][v2]; } //添加邻接矩阵 public void insertVertex(String vertex) { vertexList.add(vertex); } //插入权值 public void insertEdge(int v1, int v2, int weight) { edges[v1][v2] = weight; edges[v2][v1] = weight; numOfEdges++; } }

深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点

算法
访问初始结点v,并标记结点v为已访问。查找结点v的第一个邻接结点w。若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。查找结点v的w邻接结点的下一个邻接结点,转到步骤3
代码
//深度优先遍历 private void dfs(boolean[] isVisited, int i) { System.out.print(getValueByIndex(i) + "->"); isVisited[i] = true; int w = getFirstNeighbor(i); while(w != -1) { if(!isVisited[w]) { dfs(isVisited, w); } w = getNextNeighbor(i, w); } } public void dfs() { isVisited = new boolean[vertexList.size()]; for(int i = 0; i < getNumOfVertex(); i++) { if(!isVisited[i]) { dfs(isVisited, i); } } }

类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点

算法
访问初始结点v并标记结点v为已访问。结点v入队列当队列非空时,继续执行,否则算法结束。出队列,取得队头结点u。查找结点u的第一个邻接结点w。若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤: 若结点w尚未被访问,则访问结点w并标记为已访问。 结点w入队列 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6
代码
//广度优先遍历 private void bfs(boolean[] isVisited, int i) { int u ; int w ; LinkedList queue = new LinkedList(); System.out.print(getValueByIndex(i) + "=>"); isVisited[i] = true; queue.addLast(i); while( !queue.isEmpty()) { u = (Integer)queue.removeFirst(); w = getFirstNeighbor(u); while(w != -1) { if(!isVisited[w]) { System.out.print(getValueByIndex(w) + "=>"); isVisited[w] = true; queue.addLast(w); } w = getNextNeighbor(u, w); } } } public void bfs() { isVisited = new boolean[vertexList.size()]; for(int i = 0; i < getNumOfVertex(); i++) { if(!isVisited[i]) { bfs(isVisited, i); } } }

感谢

尚硅谷

以及勤劳的自己,个人博客,GitHub

最新回复(0)