CF704B. Ant Man

tech2025-11-15  3

CF704B. Ant Man

Solution

经典 d p dp dp,第一次见好像是在 Z J O I ZJOI ZJOI的某题? 先按 x x x排序 用 f [ i ] [ j ] f[i][j] f[i][j]表示放入前 i i i个数,有 j j j个端点(不算边界点)的最小代价。 每次可以: 1.合并两段折线 2.制造一段新的折线 3.延长一个线段 需要对于向上和向下分别考虑贡献,特判端点情况即可。

时间复杂度 O ( n 2 ) O(n^2) O(n2)

Code

#include <vector> #include <list> #include <map> #include <set> #include <deque> #include <queue> #include <stack> #include <bitset> #include <algorithm> #include <functional> #include <numeric> #include <utility> #include <sstream> #include <iostream> #include <iomanip> #include <cstdio> #include <cmath> #include <cstdlib> #include <cctype> #include <string> #include <cstring> #include <ctime> #include <cassert> #include <string.h> //#include <unordered_set> #include <unordered_map> //#include <bits/stdc++.h> #define MP(A,B) make_pair(A,B) #define PB(A) push_back(A) #define SIZE(A) ((int)A.size()) #define LEN(A) ((int)A.length()) #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define fi first #define se second using namespace std; template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; } template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; } typedef long long ll; typedef unsigned long long ull; typedef long double lod; typedef pair<int,int> PR; typedef vector<int> VI; const lod eps=1e-11; const lod pi=acos(-1); const int oo=1<<30; const ll loo=1ll<<62; const int mods=998244353; const int MAXN=5005; const int INF=0x3f3f3f3f; /*--------------------------------------------------------------------*/ inline int read() { int f=1,x=0; char c=getchar(); while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); } while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); } return x*f; } ll x[MAXN],a[MAXN],b[MAXN],c[MAXN],d[MAXN],f[MAXN][MAXN]; signed main() { int n=read(),S=read(),T=read(); for (int i=1;i<=n;i++) x[i]=read(); for (int i=1;i<=n;i++) a[i]=read(); for (int i=1;i<=n;i++) b[i]=read(); for (int i=1;i<=n;i++) c[i]=read(); for (int i=1;i<=n;i++) d[i]=read(); for (int i=0;i<=n;i++) for (int j=0;j<=n;j++) f[i][j]=loo; f[0][0]=0; for (int i=1;i<=n;i++) for (int j=(i!=1);j<n;j++) { if (i==S) { if (j<n) upmin(f[i][j+1],f[i-1][j]-x[i]+d[i]); if (j>0) upmin(f[i][j-1],f[i-1][j]+x[i]+c[i]); } else if (i==T) { if (j<n) upmin(f[i][j+1],f[i-1][j]-x[i]+b[i]); if (j>0) upmin(f[i][j-1],f[i-1][j]+x[i]+a[i]); } else { if (j<n-1) upmin(f[i][j+2],f[i-1][j]-x[i]*2+b[i]+d[i]); if (j>1) upmin(f[i][j-2],f[i-1][j]+x[i]*2+a[i]+c[i]); if (j>1||i>T) upmin(f[i][j],f[i-1][j]+b[i]+c[i]); if (j>1||i>S) upmin(f[i][j],f[i-1][j]+a[i]+d[i]); } } printf("%lld\n",f[n][0]); return 0; }
最新回复(0)