跳跃表的原理和实现(Java)

tech2022-08-17  115

一、高效查找算法

我们在实际开发中经常会有在一堆数据中查找一个指定数据的需求,而常用的支持高效查找算法的实现方式有以下几种:

有序数组:这种方式的存储结构,优点是支持数据的随机访问,并且可以采用二分查找算法降低查找操作的复杂度。缺点同样很明显,插入和删除数据时,为了保持元素的有序性,需要进行大量的移动数据的操作。二叉查找树:如果需要一个既支持高效的二分查找算法,又能快速的进行插入和删除操作的数据结构,那首先就是二叉查找树莫属了。缺点是在某些极端情况下,二叉查找树有可能变成一个线性链表。平衡二叉树:二叉树表示不服,于是基于二叉查找树的优点,对其缺点进行改进,引入了平衡的概念。根据平衡算法的不同,具体实现有AVL树、B树(B-Tree)、B+树(B+Tree)、红黑树 等等。但是平衡二叉树的实现多数比较复杂,较难理解。跳跃表:同样支持对数据进行高效的查找,插入和删除数据操作也比较简单,最重要的就是实现比较平衡二叉树真是轻量几个数量级。缺点就是存在一定数据冗余。

二、跳跃表

跳跃表(SkipList)是一种可以替代平衡树的数据结构。跳跃表让已排序的数据分布在多层次的链表结构中,默认是将 Key 值升序排列的,以 0-1 的随机值决定一个数据是否能够攀升到高层次的链表中。它通过容许一定的数据冗余,达到 “以空间换时间” 的目的。 跳跃表的效率和 AVL 相媲美,查找、添加、插入、删除操作都能够在 O(LogN) 的复杂度内完成。讲了那么多,下面就直接进入主题,详细的看一看跳跃表是怎么实现的。

三、跳跃表的实现

上面这张图就是一个跳跃表的实例,先说一下跳跃表的构造特征:

一个跳跃表应该有若干个层(Level)链表组成;

跳跃表中最底层的链表包含所有数据; 每一层链表中的数据都是有序的;

如果一个元素 X 出现在第i层,那么编号比 i 小的层都包含元素 X;

第 i 层的元素通过一个指针指向下一层拥有相同值的元素;

在每一层中,-∞ 和 +∞ 两个元素都出现(分别表示 INT_MIN 和 INT_MAX);

头指针(head)指向最高一层的第一个元素;

1、定义链表中节点的模型

Java 代码实现如下:

public class SkipListEntry<T> { // data public Integer key; public T value; // links public SkipListEntry up; public SkipListEntry down; public SkipListEntry left; public SkipListEntry right; // constructor public SkipListEntry(Integer key, T value) { this.key = key; this.value = value; } // methods... }

可以看到节点模型主要分为2个部分。 data 部分包含具体的存储数据,这里为了不引入其他杂乱的问题,使用 Integer 作为 key 的类型,Object 作为value 的类型。 links 部分包含4个指针,分别是 up、down、left、right,单从名字上就能够明白它们的作用。

2、跳跃表本身的模型

public class SkipList { // 节点数量 public int n; // 节点最大层数 public int h; // 第一个节点 SkipListEntry head; // 最后一个节点 SkipListEntry tail; public Random r; }

Note: Random 类的实例对象 r 用来决定新添加的节点是否能够向更高一层的链表攀升。

3、初始化跳跃表的实例

构造函数将初始化一个空的跳跃表看起来像下面这样:

构造函数的 Java 代码:

public SkipList() { // 创建 head 节点 this.head = new SkipListEntry(Integer.MIN_VALUE, null); // 创建 tail 节点 this.tail = new SkipListEntry(Integer.MAX_VALUE, null); // 将 head 节点的右指针指向 tail 节点 this.head.right = tail; // 将 tail 节点的左指针指向 head 节点 this.tail.left = head; this.h = 0; this.n = 0; this.r = new Random(); }

4、基本操作

跳跃表需要实现查找、插入、移除这些基本操作:

get(Integer key) : 根据 key 值查找某个元素

put(Integer key, Object value) :插入一个新的元素,元素已存在时为修改操作

remove(Integer key): 根据 key 值删除某个元素

虽然看似是 3 个不同的操作,但是究其本质,要实现这 3 个操作,都得先找到某个元素或是定位到一个元素,好在下一个位子插入新元素。那么,我们就先把这个 findEntry 的方法实现吧。 上面的图示使用紫色的箭头画出了在一个 SkipList 中查找 key 值 50 的过程。简述如下:

从 head 出发,因为 head 指向最顶层(top level)链表的开始节点,相当于从顶层开始查找;

移动到当前节点的右指针(right)指向的节点,直到右节点的 key 值大于要查找的 key 值时停止;

如果还有更低层次的链表,则移动到当前节点的下一层节点(down),如果已经处于最底层,则退出;

重复第 2 步和第 3 步,直到查找到 key 值所在的节点,或者不存在而退出查找; Java 代码实现如下:

private SkipListEntry findEntry(Integer key) { // 从head头节点开始查找 SkipListEntry p = head; while (true) { // 从左向右查找,直到右节点的key值大于要查找的key值 while (p.right.key <= key) { p = p.right; } // 如果有更低层的节点,则向低层移动 if (p.down != null) { p = p.down; } else { break; } } // 返回p,!注意这里p的key值是小于等于传入key的值的(p.key <= key) return p; }

注意以下几点:

如果传入的 key 值在跳跃表中存在,则 findEntry 返回该对象的底层节点;

如果传入的 key 值在跳跃表中不存在,则 findEntry 返回跳跃表中 key 值小于 key,并且 key 值相差最小的底层节点;

示例,在跳跃表中查找 key=42 的元素节点,将返回 key=39 的节点。如下图所示: 基于 findEntry 方法,我们就能很容易的实现前面所说的一些操作了。

get方法

public Object get(Integer key) { SkipListEntry p = findEntry(key); if (p.key.equals(key)) { return p.value; } else { return null; } }

put方法

一些需要注意的步骤:

如果 put 的 key 值在跳跃表中存在,则进行修改操作;

如果 put 的 key 值在跳跃表中不存在,则需要进行新增节点的操作,并且需要由 random 随机数决定新加入的节点的高度(最大level);

当新添加的节点高度达到跳跃表的最大 level,需要添加一个空白层(除了-oo 和 +oo 没有别的节点)

下面我们一步一步的通过图示看一下插入节点的过程: 第一步,查找适合插入的位子 第二步,在查找到的p节点后面插入新增的节点q

第三步,重复下面的操作,使用随机数决定新增节点的高度

从p节点开始,向左移动,直到找到含有更高level节点的节点;

将p指针向上移动一个level;

创建一个和q节点data一样的节点,插入位子在跳跃表中p的右方和q的上方;

直到随机数不满足向上攀升的条件为止;

图示如下:

只要随机数满足条件,key=42 的节点就会一直向上攀升,直到它的 level 等于跳跃表的高度(height)。这个时候我们需要在跳跃表的最顶层添加一个空白层,同时跳跃表的 height+1,以满足下一次新增节点的操作。 Java代码实现如下:

public Object put(Integer key, Object value) { SkipListEntry p, q; int i = 0; // 查找适合插入的位子 p = findEntry(key); // 如果跳跃表中存在含有key值的节点,则进行value的修改操作即可完成 if (p.key.equals(key)) { Object oldValue = p.value; p.value = value; return oldValue; } // 如果跳跃表中不存在含有key值的节点,则进行新增操作 q = new SkipListEntry(key, value); q.left = p; q.right = p.right; p.right.left = q; p.right = q; // 再使用随机数决定是否要向更高level攀升 while (r.nextDouble() < 0.5) { // 如果新元素的级别已经达到跳跃表的最大高度,则新建空白层 if (i >= h) { addEmptyLevel(); } // 从p向左扫描含有高层节点的节点 while (p.up == null) { p = p.left; } p = p.up; // 新增和q指针指向的节点含有相同key值的节点对象 // 这里需要注意的是除底层节点之外的节点对象是不需要value值的 SkipListEntry z = new SkipListEntry(key, null); z.left = p; z.right = p.right; p.right.left = z; p.right = z; z.down = q; q.up = z; q = z; i = i + 1; } n = n + 1; // 返回null,没有旧节点的value值 return null; }

remove方法

删除节点的操作相对 put 就比较简单了,首先查找到包含 key 值的节点,将节点从链表中移除,接着如果有更高 level 的节点,则 repeat 这个操作即可。 Java代码实现如下:

public Object remove(Integer key) { SkipListEntry p, q; p = findEntry(key); if (!p.key.equals(key)) { return null; } Object oldValue = p.value; while (p != null) { q = p.up; p.left.right = p.right; p.right.left = p.left; p = q; } return oldValue; }

跳跃表的原理和实现到这里就结束了。 还有需要说明的一点是:跳跃表每次运行的结果是不一样的,这就是为什么说跳跃表是属于随机化数据结构。(Random的存在导致的)

四、跳跃表在Java中的应用

ConcurrentSkipListMap:在功能上对应HashTable、HashMap、TreeMap;

ConcurrentSkipListSet : 在功能上对应HashSet;

确切的说,SkipList 更像 Java 中的 TreeMap ,TreeMap 基于红黑树(一种自平衡二叉查找树)实现的,时间复杂度平均能达到 O(log n)。 HashMap 是基于散列表实现的,查找时间复杂度平均能达到 O(1)。ConcurrentSkipListMap 是基于跳跃表实现的,查找时间复杂度平均能达到 O(log n)。 ConcurrentSkipListMap 具有 SkipList 的性质 ,并且适用于大规模数据的并发访问。多个线程可以安全地并发执行插入、移除、更新和访问操作。与其他有锁机制的数据结构在巨大的压力下相比有优势。 TreeMap 插入数据时平衡树采用严格的旋转操作(比如平衡二叉树有左旋右旋)来保证平衡,因此 SkipList 比较容易实现,而且相比平衡树有着较高的运行效率。

最新回复(0)