作者:WHJWNAVY
http://www.demodashi.com/demo/12967.html
概述
本文中的人体肤色检测功能采用 OpenCV 库实现。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上. 它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
本文主要使用了OpenCV的图像色域转换, 颜色通道分割, 高斯滤波, OSTU自动阈值等功能.
OpenCV探索之路:皮肤检测技术
学习OpenCV—肤色检测
利用 -i 为pip指令镜像源, 这里使用电子科技大学的源, 速度比官方源更快.
YCrCb 即 YUV ,其中 Y 表示明亮度 Luminance 或 Luma , 也就是灰阶值. 而 U 和 V 表示的则是色度 Chrominance 或 Chroma ,作用是描述影像色彩及饱和度, 用于指定像素的颜色. 亮度 是透过RGB输入信号来建立的, 方法是将RGB信号的特定部分叠加到一起. 色度 则定义了颜色的两个方面─色调与饱和度,分别用 Cr 和 Cb 来表示. 其中, Cr 反映了RGB输入信号红色部分与RGB信号亮度值之间的差异. 而 Cb 反映的是RGB输入信号蓝色部分与RGB信号亮度值之间的差异.
该方法的原理也很简单:
将RGB图像转换到 YCrCb 颜色空间,提取 Cr 分量图像
对 Cr 分量进行高斯滤波
对Cr做自二值化阈值分割处理 OSTU 法
使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分(比如:噪音,边界)。所以边界也会被模糊一点。(当然,也有一些模糊技术不会模糊掉边界)。OpenCV 提供了四种模糊技术。高斯滤波就是其中一种。实现的函数是 cv2.GaussianBlur()。我们需要指定高斯滤波器的宽和高(必须是奇数)。以及高斯函数沿 X,Y 方向的标准差。如果我们只指定了 X 方向的的标准差,Y 方向也会取相同值。如果两个标准差都是 0,那么函数会根据核函数的大小自己计算。高斯滤波可以有效的从图像中去除高斯噪音。如果你愿意的话,你也可以使用函数 cv2.getGaussianKernel() 自己构建一个高斯滤波器。
# 肤色检测之一: YCrCb之Cr分量 + OTSU二值化img = cv2.imread(imname, cv2.IMREAD_COLOR)ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) # 把图像转换到YUV色域(y, cr, cb) = cv2.split(ycrcb) # 图像分割, 分别获取y, cr, br通道图像# 高斯滤波, cr 是待滤波的源图像数据, (5,5)是值窗口大小, 0 是指根据窗口大小来计算高斯函数标准差cr1 = cv2.GaussianBlur(cr, (5, 5), 0) # 对cr通道分量进行高斯滤波# 根据OTSU算法求图像阈值, 对图像进行二值化_, skin1 = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) cv2.imshow("image CR", cr1)cv2.imshow("Skin Cr+OSTU", skin1 )这个方法跟法一其实大同小异,只是颜色空间不同而已。据资料显示,正常黄种人的Cr分量大约在140至175之间,Cb分量大约在100至120之间。大家可以根据自己项目需求放大或缩小这两个分量的范围,会有不同的效果。
# 肤色检测之二: YCrCb中 140<=Cr<=175 100<=Cb<=120img = cv2.imread(imname, cv2.IMREAD_COLOR)ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) # 把图像转换到YUV色域(y, cr, cb) = cv2.split(ycrcb) # 图像分割, 分别获取y, cr, br通道分量图像 skin2 = np.zeros(cr.shape, dtype=np.uint8) # 根据源图像的大小创建一个全0的矩阵,用于保存图像数据(x, y) = cr.shape # 获取源图像数据的长和宽 # 遍历图像, 判断Cr和Br通道的数值, 如果在指定范围中, 则置把新图像的点设为255,否则设为0for i in range(0, x): for j in range(0, y): if (cr[i][j] > 140) and (cr[i][j] < 175) and (cb[i][j] > 100) and (cb[i][j] < 120): skin2[i][j] = 255 else: skin2[i][j] = 0 cv2.imshow(imname, img)cv2.imshow(imname + " Skin2 Cr+Cb", skin2)检测效果
这个方法跟上一方法类似,只是颜色空间不同而已。据资料显示,正常黄种人的H分量大约在7至20之间,S分量大约在28至256之间,V分量大约在50至256之间。大家可以根据自己项目需求放大或缩小这两个分量的范围,会有不同的效果。
# 肤色检测之三: HSV中 7<H<20 28<S<256 50<V<256img = cv2.imread(imname, cv2.IMREAD_COLOR) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # 把图像转换到HSV色域(_h, _s, _v) = cv2.split(hsv) # 图像分割, 分别获取h, s, v 通道分量图像skin3 = np.zeros(_h.shape, dtype=np.uint8) # 根据源图像的大小创建一个全0的矩阵,用于保存图像数据(x, y) = _h.shape # 获取源图像数据的长和宽 # 遍历图像, 判断HSV通道的数值, 如果在指定范围中, 则置把新图像的点设为255,否则设为0for i in range(0, x): for j in range(0, y): if (_h[i][j] > 7) and (_h[i][j] < 20) and (_s[i][j] > 28) and (_s[i][j] < 255) and (_v[i][j] > 50) and (_v[i][j] < 255): skin3[i][j] = 255 else: skin3[i][j] = 0 cv2.imshow(imname, img)cv2.imshow(imname + " Skin3 HSV", skin3)检测效果
Python人体肤色检测