PyTorch Trick集锦

tech2022-08-27  125

点击上方,选择星标或置顶,每天给你送干货!

阅读大概需要17分钟

跟随小博主,每天进步一丢丢

作者丨z.defying@知乎

来源丨https://zhuanlan.zhihu.com/p/76459295

编辑 | 极市平台

仅作学术分享,如有侵权,请联系删文

目录

1、指定GPU编号

2、查看模型每层输出详情

3、梯度裁剪

4、扩展单张图片维度

5、one hot编码

6、防止验证模型时爆显存

7、学习率衰减

8、冻结某些层的参数

9、对不同层使用不同学习率

10、模型相关操作

11、Pytorch内置one hot函数

12、网络参数初始化

13、加载内置预训练模型

1、指定GPU编号

设置当前使用的GPU设备仅为0号设备,设备名称为 /gpu:0:os.environ["CUDA_VISIBLE_DEVICES"] = "0"

设置当前使用的GPU设备为0,1号两个设备,名称依次为 /gpu:0、/gpu:1:os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" ,根据顺序表示优先使用0号设备,然后使用1号设备。

指定GPU的命令需要放在和神经网络相关的一系列操作的前面。

2、查看模型每层输出详情

Keras有一个简洁的API来查看模型的每一层输出尺寸,这在调试网络时非常有用。现在在PyTorch中也可以实现这个功能。

使用很简单,如下用法:

from torchsummary import summary summary(your_model, input_size=(channels, H, W))

input_size 是根据你自己的网络模型的输入尺寸进行设置。

3、梯度裁剪(Gradient Clipping)

import torch.nn as nn outputs = model(data) loss= loss_fn(outputs, target) optimizer.zero_grad() loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2) optimizer.step()

nn.utils.clip_grad_norm_ 的参数:

parameters – 一个基于变量的迭代器,会进行梯度归一化

max_norm – 梯度的最大范数

norm_type – 规定范数的类型,默认为L2

@不椭的椭圆 提出:梯度裁剪在某些任务上会额外消耗大量的计算时间,可移步评论区查看详情。

4、扩展单张图片维度

因为在训练时的数据维度一般都是 (batch_size, c, h, w),而在测试时只输入一张图片,所以需要扩展维度,扩展维度有多个方法:

import cv2 import torch image = cv2.imread(img_path) image = torch.tensor(image) print(image.size()) img = image.view(1, *image.size()) print(img.size()) # output: # torch.Size([h, w, c]) # torch.Size([1, h, w, c])

import cv2 import numpy as np image = cv2.imread(img_path) print(image.shape) img = image[np.newaxis, :, :, :] print(img.shape) # output: # (h, w, c) # (1, h, w, c)

或(感谢 @coldleaf 的补充)

import cv2 import torch image = cv2.imread(img_path) image = torch.tensor(image) print(image.size()) img = image.unsqueeze(dim=0) print(img.size()) img = img.squeeze(dim=0) print(img.size()) # output: # torch.Size([(h, w, c)]) # torch.Size([1, h, w, c]) # torch.Size([h, w, c])

tensor.unsqueeze(dim):扩展维度,dim指定扩展哪个维度。

tensor.squeeze(dim):去除dim指定的且size为1的维度,维度大于1时,squeeze()不起作用,不指定dim时,去除所有size为1的维度。

5、独热编码

在PyTorch中使用交叉熵损失函数的时候会自动把label转化成onehot,所以不用手动转化,而使用MSE需要手动转化成onehot编码。

import torch class_num = 8 batch_size = 4 def one_hot(label): """ 将一维列表转换为独热编码 """ label = label.resize_(batch_size, 1) m_zeros = torch.zeros(batch_size, class_num) # 从 value 中取值,然后根据 dim 和 index 给相应位置赋值 onehot = m_zeros.scatter_(1, label, 1) # (dim,index,value) return onehot.numpy() # Tensor -> Numpy label = torch.LongTensor(batch_size).random_() % class_num # 对随机数取余 print(one_hot(label)) # output: [[0. 0. 0. 1. 0. 0. 0. 0.] [0. 0. 0. 0. 1. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0.]]

注:第11条有更简单的方法。

6、防止验证模型时爆显存

验证模型时不需要求导,即不需要梯度计算,关闭autograd,可以提高速度,节约内存。如果不关闭可能会爆显存。

with torch.no_grad(): # 使用model进行预测的代码 pass

感谢@zhaz 的提醒,我把 torch.cuda.empty_cache() 的使用原因更新一下。

这是原回答:

Pytorch 训练时无用的临时变量可能会越来越多,导致 out of memory ,可以使用下面语句来清理这些不需要的变量。

官网 上的解释为:

Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible innvidia-smi. torch.cuda.empty_cache()

意思就是PyTorch的缓存分配器会事先分配一些固定的显存,即使实际上tensors并没有使用完这些显存,这些显存也不能被其他应用使用。这个分配过程由第一次CUDA内存访问触发的。

而 torch.cuda.empty_cache() 的作用就是释放缓存分配器当前持有的且未占用的缓存显存,以便这些显存可以被其他GPU应用程序中使用,并且通过 nvidia-smi命令可见。注意使用此命令不会释放tensors占用的显存。

对于不用的数据变量,Pytorch 可以自动进行回收从而释放相应的显存。

更详细的优化可以查看 优化显存使用 和 显存利用问题。

7、学习率衰减

import torch.optim as optim from torch.optim import lr_scheduler # 训练前的初始化 optimizer = optim.Adam(net.parameters(), lr=0.001) scheduler = lr_scheduler.StepLR(optimizer, 10, 0.1) # # 每过10个epoch,学习率乘以0.1 # 训练过程中 for n in n_epoch: scheduler.step() ...

可以随时查看学习率的值:optimizer.param_groups[0]['lr']。

还有其他学习率更新的方式:

1、自定义更新公式:

scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch:1/(epoch+1))

2、不依赖epoch更新学习率:

lr_scheduler.ReduceLROnPlateau()提供了基于训练中某些测量值使学习率动态下降的方法,它的参数说明到处都可以查到。提醒一点就是参数 mode='min' 还是'max',取决于优化的的损失还是准确率,即使用 scheduler.step(loss)还是scheduler.step(acc) 。

  8、冻结某些层的参数

参考:https://www.zhihu.com/question/311095447/answer/589307812

在加载预训练模型的时候,我们有时想冻结前面几层,使其参数在训练过程中不发生变化。

我们需要先知道每一层的名字,通过如下代码打印:

net = Network() # 获取自定义网络结构 for name, value in net.named_parameters(): print('name: {0},\t grad: {1}'.format(name, value.requires_grad))

假设前几层信息如下:

name: cnn.VGG_16.convolution1_1.weight, grad: True name: cnn.VGG_16.convolution1_1.bias, grad: True name: cnn.VGG_16.convolution1_2.weight, grad: True name: cnn.VGG_16.convolution1_2.bias, grad: True name: cnn.VGG_16.convolution2_1.weight, grad: True name: cnn.VGG_16.convolution2_1.bias, grad: True name: cnn.VGG_16.convolution2_2.weight, grad: True name: cnn.VGG_16.convolution2_2.bias, grad: True

后面的True表示该层的参数可训练,然后我们定义一个要冻结的层的列表:

no_grad = [ 'cnn.VGG_16.convolution1_1.weight', 'cnn.VGG_16.convolution1_1.bias', 'cnn.VGG_16.convolution1_2.weight', 'cnn.VGG_16.convolution1_2.bias' ]

冻结方法如下:

net = Net.CTPN() # 获取网络结构 for name, value in net.named_parameters(): if name in no_grad: value.requires_grad = False else: value.requires_grad = True

冻结后我们再打印每层的信息:

name: cnn.VGG_16.convolution1_1.weight, grad: False name: cnn.VGG_16.convolution1_1.bias, grad: False name: cnn.VGG_16.convolution1_2.weight, grad: False name: cnn.VGG_16.convolution1_2.bias, grad: False name: cnn.VGG_16.convolution2_1.weight, grad: True name: cnn.VGG_16.convolution2_1.bias, grad: True name: cnn.VGG_16.convolution2_2.weight, grad: True name: cnn.VGG_16.convolution2_2.bias, grad: True

可以看到前两层的weight和bias的requires_grad都为False,表示它们不可训练。

最后在定义优化器时,只对requires_grad为True的层的参数进行更新。

optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.01)

  9、对不同层使用不同学习率

我们对模型的不同层使用不同的学习率。

还是使用这个模型作为例子:

net = Network() # 获取自定义网络结构 for name, value in net.named_parameters(): print('name: {}'.format(name)) # 输出: # name: cnn.VGG_16.convolution1_1.weight # name: cnn.VGG_16.convolution1_1.bias # name: cnn.VGG_16.convolution1_2.weight # name: cnn.VGG_16.convolution1_2.bias # name: cnn.VGG_16.convolution2_1.weight # name: cnn.VGG_16.convolution2_1.bias # name: cnn.VGG_16.convolution2_2.weight # name: cnn.VGG_16.convolution2_2.bias

对 convolution1 和 convolution2 设置不同的学习率,首先将它们分开,即放到不同的列表里:

conv1_params = [] conv2_params = [] for name, parms in net.named_parameters(): if "convolution1" in name: conv1_params += [parms] else: conv2_params += [parms] # 然后在优化器中进行如下操作: optimizer = optim.Adam( [ {"params": conv1_params, 'lr': 0.01}, {"params": conv2_params, 'lr': 0.001}, ], weight_decay=1e-3, )

我们将模型划分为两部分,存放到一个列表里,每部分就对应上面的一个字典,在字典里设置不同的学习率。当这两部分有相同的其他参数时,就将该参数放到列表外面作为全局参数,如上面的`weight_decay`。

也可以在列表外设置一个全局学习率,当各部分字典里设置了局部学习率时,就使用该学习率,否则就使用列表外的全局学习率。

  10、模型相关操作

这个内容比较多,我写成了一篇文章:https://zhuanlan.zhihu.com/p/73893187

  11、Pytorch内置one_hot函数

感谢@yangyangyang 补充:Pytorch 1.1后,one_hot可以直接用torch.nn.functional.one_hot。

然后我将Pytorch升级到1.2版本,试用了下 one_hot 函数,确实很方便。

具体用法如下:

import torch.nn.functional as F import torch tensor = torch.arange(0, 5) % 3 # tensor([0, 1, 2, 0, 1]) one_hot = F.one_hot(tensor) # 输出: # tensor([[1, 0, 0], # [0, 1, 0], # [0, 0, 1], # [1, 0, 0], # [0, 1, 0]])

F.one_hot会自己检测不同类别个数,生成对应独热编码。我们也可以自己指定类别数:

tensor = torch.arange(0, 5) % 3 # tensor([0, 1, 2, 0, 1]) one_hot = F.one_hot(tensor, num_classes=5) # 输出: # tensor([[1, 0, 0, 0, 0], # [0, 1, 0, 0, 0], # [0, 0, 1, 0, 0], # [1, 0, 0, 0, 0], # [0, 1, 0, 0, 0]])

升级 Pytorch (cpu版本)的命令:conda install pytorch torchvision \-c pytorch

(希望Pytorch升级不会影响项目代码)

  12、网络参数初始化

神经网络的初始化是训练流程的重要基础环节,会对模型的性能、收敛性、收敛速度等产生重要的影响。

以下介绍两种常用的初始化操作。

(1) 使用pytorch内置的torch.nn.init方法。

常用的初始化操作,例如正态分布、均匀分布、xavier初始化、kaiming初始化等都已经实现,可以直接使用。具体详见PyTorch 中 torch.nn.init 中文文档。

init.xavier_uniform(net1[0].weight)

(2) 对于一些更加灵活的初始化方法,可以借助numpy。

对于自定义的初始化方法,有时tensor的功能不如numpy强大灵活,故可以借助numpy实现初始化方法,再转换到tensor上使用。

for layer in net1.modules(): if isinstance(layer, nn.Linear): # 判断是否是线性层 param_shape = layer.weight.shape layer.weight.data = torch.from_numpy(np.random.normal(0, 0.5, size=param_shape)) # 定义为均值为 0,方差为 0.5 的正态分布

  13、加载内置预训练模型

torchvision.models模块的子模块中包含以下模型:

AlexNet

VGG

ResNet

SqueezeNet

DenseNet

导入这些模型的方法为:

import torchvision.models as models resnet18 = models.resnet18() alexnet = models.alexnet() vgg16 = models.vgg16()

有一个很重要的参数为pretrained,默认为False,表示只导入模型的结构,其中的权重是随机初始化的。

如果pretrained 为 True,表示导入的是在ImageNet数据集上预训练的模型。

import torchvision.models as models resnet18 = models.resnet18(pretrained=True) alexnet = models.alexnet(pretrained=True) vgg16 = models.vgg16(pretrained=True)

更多的模型可以查看:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-models/

说个正事哈

由于微信平台算法改版,公号内容将不再以时间排序展示,如果大家想第一时间看到我们的推送,强烈建议星标我们和给我们多点点【在看】。星标具体步骤为:

(1)点击页面最上方“深度学习自然语言处理”,进入公众号主页。

(2)点击右上角的小点点,在弹出页面点击“设为星标”,就可以啦。

感谢支持,比心。

投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。

记得备注呦

推荐两个专辑给大家:

专辑 | 李宏毅人类语言处理2020笔记

专辑 | NLP论文解读

专辑 | 情感分析

整理不易,还望给个在看!
最新回复(0)