Java并发必知必会第三弹:用积木讲解ABA原理

tech2022-08-29  106

作者介绍

本篇主要内容如下

本篇主要内容

一、背景

4个A

上一节我们讲了程序员深夜惨遭老婆鄙视,原因竟是CAS原理太简单?,留了一个彩蛋给大家,ABA问题是怎么出现的,为什么不是AAB拖拉机,AAA金花,4个A炸弹 ?这一篇我们再来揭开ABA的神秘面纱。

二、面试连环炮

面试的时候我们也经常遭遇面试官的连环追问:

CAS概念?

Unsafe类是干啥用的?

CAS底层实现是怎么样的

ABA问题什么场景下会出现?

ABA有什么危害?

原子引用更新是啥?

如何避免ABA问题?

面试连环炮

三、用积木讲解ABA问题

案例:甲看见一个三角形积木,觉得不好看,想替换成五边形,但是乙想把积木替换成四边形。(前提条件,只能被替换一次)

用积木讲解ABA过程

可能出现的过程如上图所示:

第一步:乙先抢到了积木,将三角形A积木替换成五角星B1

第二步:乙将五角星B1替换成五边形B2

第三步:乙将五边形B2替换成棱形B3

第四步:乙将棱形B3替换成六边形B4

第五步:乙将六边形B4替换成三角形A

第六步:甲看到积木还是三角形,认为乙没有替换,甲可以进行替换

第七步:甲将三角形V替换成了五边形B

**讲解:**第一步到第五步,都是乙在替换,但最后还是替换成了三角形(即是不是同一个三角形),这个就是ABA,A指最开始是三角形,B指中间被替换的B1/B2/B3/B4,第二个A就是第五步中的A,中间不论经过怎么样的形状替换,最后还是变成了三角形。然后甲再将A2和A1进行形状比较,发现都是三角形,所以认为乙没有动过积木,甲可以进行替换。这个就是比较并替换(CAS)中的ABA问题。

**小结:**CAS只管开头和结尾,中间过程不关心,只要头尾相同,则认为可以进行修改,而中间过程很可能被其他人改过。

四、用原子引用类演示ABA问题

AtomicReference:原子引用类

1.首先我们需要定义一个积木类

/**  积木类  * @author: 悟空聊架构  * @create: 2020-08-25  */ class BuildingBlock {     String shape;     public BuildingBlock(String shape) {         this.shape = shape;     }     @Override     public String toString() {         return "BuildingBlock{" + "shape='" + shape + '}';     } }

2.定义3个积木:三角形A,四边形B,五边形D

static BuildingBlock A = new BuildingBlock("三角形"); // 初始化一个积木对象B,形状为四边形 static BuildingBlock B = new BuildingBlock("四边形"); // 初始化一个积木对象D,形状为五边形 static BuildingBlock D = new BuildingBlock("五边形");

初始化原子引用类

static AtomicReference<BuildingBlock> atomicReference = new AtomicReference<>(A);

4.线程“乙”执行ABA操作

new Thread(() -> {// 初始化一个积木对象A,形状为三角形            atomicReference.compareAndSet(A, B); // A->B            atomicReference.compareAndSet(B, A); // B->A         }, 

5.线程“甲”执行比较并替换

new Thread(() -> {// 初始化一个积木对象A,形状为三角形            try {                // 睡眠一秒,保证t1线程,完成了ABA操作                TimeUnit.SECONDS.sleep(1);            } catch (InterruptedException e) {                e.printStackTrace();            }            // 可以替换成功,因为乙线程执行了A->B->A,形状没变,所以甲可以进行替换。            System.out.println(atomicReference.compareAndSet(A, D) + "\t" + atomicReference.get()); // true BuildingBlock{shape='五边形}        }, "甲").start();

**输出结果:**true BuildingBlock{shape='五边形}

**小结:**当线程“乙”执行ABA之后,线程“甲”比较后,发现预期值和当前值一致,将三角形替换成了五边形。

五、那ABA到底有什么危害?

我们看到乙不管怎么进行操作,甲看到的还是三角形,那甲当成乙没有改变积木形状 又有什么问题呢?

出现的问题场景通常是带有消耗类的场景,比如库存减少,商品卖出。

1.我们想象一下生活中的这个喝水场景:

ABA喝水场景

(1)一家三口人,爸爸、妈妈、儿子。

(2)一天早上6点,妈妈给儿子的水杯灌满了水(水量为A),儿子先喝了一半(水量变成B)。

(3)然后妈妈把水杯又灌满了(水量为A),等中午再喝(妈妈执行了一个ABA操作)。

(4)爸爸7点看到水杯还是满的(不知道是妈妈又灌满的),于是给儿子喝了1/3(水量变成D)

(5)那在中午之前,儿子喝了1/2+1/3= 5/6的水,这不是妈妈期望的,因为妈妈只想让儿子中午之前喝半杯水。

这个场景的ABA问题带来的后果就是本来只用喝1/2的水,结果喝了5/6的水。

2.我们再想象一下电商中的场景

(1)商品Y的库存是10(A)

(2)用户m购买了5件(B)

(3)运营人员乙补货5件(A)(乙执行了一个ABA操作)

(4)运营人员甲看到库存还是10,就认为一件也没有卖出去(不考虑交易记录),其实已经卖出去了5件。

那我们怎么解决原子引用的问题呢?

可以用加版本号的方式来解决两个A相同的问题,比如上面的积木案例,我们可以给两个三角形都打上一个版本号的标签,如A1和A2,在第六步中,形状和版本号一致甲才可以进行替换,因形状都是三角形,而版本号一个1,一个是2,所以不能进行替换。

ABA问题的解决方案

在Java代码中,我们可以用原子时间戳引用类型:AtomicStampedReference

六、带版本号的原子引用类型

1.我们看一看这个原子类AtomicStampedReference的底层代码

比较并替换方法compareAndSet

public boolean compareAndSet(V   expectedReference,                              V   newReference,                              int expectedStamp,                              int newStamp) {     Pair<V> current = pair;     return         expectedReference == current.reference &&         expectedStamp == current.stamp &&         ((newReference == current.reference &&           newStamp == current.stamp) ||          casPair(current, Pair.of(newReference, newStamp))); }

expectedReference:期望值

newReference:替换值

expectedStamp:期望版本号

newStamp:替换版本号

先比较期望值expectedReference和当前值是否相等,以及期望版本号和当前版本号是否相等,如果两者都相等,则表示没有被修改过,可以进行替换。

2.如何使用AtomicStampedReference?

代码示例的原理图

(1)先定义3个积木:三角形A,四边形B,五边形D

// 初始化一个积木对象A,形状为三角形 BuildingBlock A = new BuildingBlock("三角形"); // 初始化一个积木对象B,形状为四边形,乙会将三角形替换成四边形 BuildingBlock B = new BuildingBlock("四边形"); // 初始化一个积木对象B,形状为四边形,乙会将三边形替换成五边形 BuildingBlock D = new BuildingBlock("五边形");

(2)创建一个原子引用类型的实例 atomicReference

 // 传递两个值,一个是初始值,一个是初始版本号  AtomicStampedReference<BuildingBlock> atomicStampedReference = new AtomicStampedReference<>(A, 1);

(3)创建一个线程“乙”执行ABA操作

new Thread(() -> {     // 获取版本号     int stamp = atomicStampedReference.getStamp();     System.out.println(Thread.currentThread().getName() + "\t 第一次版本号" + stamp);     // 暂停线程“乙”1秒钟,使线程“甲”可以获取到原子引用的版本号     try {         TimeUnit.SECONDS.sleep(1);     } catch (InterruptedException e) {         e.printStackTrace();     }     /*     * 乙线程开始ABA替换     * */     // 1.比较并替换,传入4个值,期望值A,更新值B,期望版本号,更新版本号     atomicStampedReference.compareAndSet(A, B, atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1);     System.out.println(Thread.currentThread().getName() + "\t 第二次版本号" + atomicStampedReference.getStamp()); //乙  第一次版本号1     // 2.比较并替换,传入4个值,期望值B,更新值A,期望版本号,更新版本号     atomicStampedReference.compareAndSet(B, A, atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1); // 乙  第二次版本号2     System.out.println(Thread.currentThread().getName() + "\t 第三次版本号" + atomicStampedReference.getStamp()); // 乙  第三次版本号3 }, "乙").start();

1)乙先获取原子类的版本号,第一次获取到的版本号为1

2)暂停线程“乙”1秒钟,使线程“甲”可以获取到原子引用的版本号

3)比较并替换,传入4个值,期望值A,更新值B,期望版本号stamp,更新版本号stamp+1。A被替换为B,当前版本号为2

4)比较并替换,传入4个值,期望值B,更新值A,期望版本号getStamp(),更新版本号getStamp()+1。B替换为A,当前版本号为3

(4)创建一个线程“甲”执行D替换A操作

new Thread(() -> {      // 获取版本号      int stamp = atomicStampedReference.getStamp();      System.out.println(Thread.currentThread().getName() + "\t 第一次版本号" + stamp); // 甲   第一次版本号1      // 暂停线程“甲”3秒钟,使线程“乙”进行一次ABA替换操作      try {      TimeUnit.SECONDS.sleep(3);      } catch (InterruptedException e) {          e.printStackTrace();      }      boolean result = atomicStampedReference.compareAndSet(A,D,stamp,stamp + 1);      System.out.println(Thread.currentThread().getName() + "\t 修改成功否" + result + "\t 当前最新实际版本号:" + atomicStampedReference.getStamp()); // 甲     修改成功否false     当前最新实际版本号:3      System.out.println(Thread.currentThread().getName() + "\t 当前实际最新值:" + atomicStampedReference.getReference()); // 甲     当前实际最新值:BuildingBlock{shape='三角形} }, "甲").start();

(1)甲先获取原子类的版本号,版本号为1,因为乙线程还未执行ABA,所以甲获取到的版本号和乙获取到的版本号一致。

(2)暂停线程“甲”3秒钟,使线程“乙”进行一次ABA替换操作

(3)乙执行完ABA操作后,线程甲执行比较替换,期望为A,实际是A,版本号期望值是1,实际版本号是3

(4)虽然期望值和实际值都是A,但是版本号不一致,所以甲不能将A替换成D,这个就避免了ABA的问题。

小结: 带版本号的原子引用类可以利用CAS+版本号来比较变量是否被修改。

总结

本篇分析了ABA产生的原因,然后又列举了生活中的两个案例来分析ABA的危害。然后提出了怎么解决ABA问题:用带版本号的原子引用类AtomicStampedReference。

限于篇幅和侧重点,CAS的优化并没有涉及到,后续再倒腾这一块吧。另外AtomicStampedReference的缺点本篇本没有进行讲解,限于笔者的技术水平原因,并没有一一作答,期待后续能补上这一块的解答。

我是悟空,一只努力变强的码农!我要变身超级赛亚人啦!

最新回复(0)