点击上方“3D视觉工坊”,选择“星标”
干货第一时间送达
论文题目:《Voting-Based Pose Estimation for Robotic Assembly Using a 3D Sensor》
这篇文章被发表在2012年的IEEE International Conference on Robotics and Automation上。
摘要:本文提出了一种基于投票的适用于三维传感器的位姿估计算法,能够快速代替机器人行业、计算机视觉和游戏应用程序中二维相应的算法。最近研究表明在投票框架中,一对有方向的三维点,即物体表面上的点有其对应的法线可以实现快速和鲁棒的位姿估计。尽管定向表面点对于有足够曲率变化的对象具有辨别能力,但对于许多工业和现实生活中大部分平面的对象来说,它们不够紧凑和辨别能力强。由于边缘在二维配准中起关键作用,深度不连续性在三维中起关键作用。在本文中,我们研究和发展了一组姿态估计算法,以更好地利用这一边界信息。除了有方向的表面点,我们使用了另外两个基本元素:有方向的边界点和边界线段。实验表明,这些经过精心选择的原语编码的信息更紧凑,从而为广泛的工业零件提供更高的精度,并使得计算速度更快,本文使用提出的算法和一个3D传感器来演示了一个实用的机器人捡货系统。
图1
如上图左边所示,展示了捡箱系统的设置。本系统使用一个附在六轴工业机器人手臂上的3D传感器来估计随机放置在箱子里的物体的姿态。3D传感器是基于结构光使用红外激光,并提供三维数据作为像素的深度图。3D传感器相对于机器人手臂进行校准,从而允许使用估计的姿态抓取和挑选对象。右图为算法流程图,本系统使用3D传感器扫描对象的箱子,给定目标物体的三维CAD模型,使用基于投票的算来扫描三维点云对目标物体进行检测和姿态估计,这提供了多个粗的位姿假设。该系统选择几个最优位姿假设,并使用ICP算法的变体对其进行单独的优化。该算法利用当前位姿估计对CAD模型进行渲染,并通过对渲染模型表面的采样生成三维点。然后为模型中的每个三维点计算扫描点云中最近的三维点,并利用三维点对应更新姿态估计。改进后的配准误差由对应场景与模型点之间的平均距离给出,当投票算法计算出的粗位姿不正确,或者由于被其他物体遮挡而丢失部分物体时,配准误差会很大。如果配准误差很小,并且机器人手臂能安全地到达估计的姿态,系统就会抓取目标。
1)S2S — Surface-to-Surface
2)B2B — Boundary-to-Boundary
3)S2B — Surface-to-Boundary
4)L2L — Line-to-Line
图2
在计算点对特征并构造哈希表结构的基础上,通过计算场景对特征与一组对应的模型对特征之间的刚体变换,找到提出假设,为了提高搜索效率,本文采用了投票方案,利用局部坐标将投票空间缩减为2D空间。首先,在哈希表中搜索场景点对,其中是来自场景的基元集,并找到对应的模型点对, 然后将点对的参考点对准中间坐标系,如图3所示。为了完全对齐对,参考点和,应该通过围绕法线旋转物体来对齐。计算平面旋转角度后,局部坐标由参考模型点对与平面旋转角度定义,到的变换为:
图3
图4
本文采用的是欧式聚类,首先对原始的pose假设按投票数的降序排序,从最高的投票中创建了一个新的集群。如果下一个位姿假设靠近一个已有的簇,则将该假设添加到簇中,簇中心更新为簇内位姿假设的平均值。如果下一个假设不接近任何一个集群,它就会创建一个新的集群。在平移和旋转过程中,采用固定阈值进行近似测试。平移距离计算和均值化在三维欧几里得空间中进行,旋转距离计算和均值化使用四元数表示。聚类后,对聚类按总票数的递减顺序进行排序,总票数决定了估计姿态的置信度。
1)合成数据
2)真实数据
论文下载方式
在公众号「3D视觉工坊」后台回复「机器人装配姿态估计」,即可获得论文下载链接。
[1] C. Choi and H. I. Christensen, “Robust 3D visual tracking using particle filtering on the SE(3) group,” in ICRA, 2011.
[2] R. Raskar, K. Tan, R. Feris, J. Yu, and M. Turk, “Non-photorealistic
camera: Depth edge detection and stylized rendering using multi-flash imaging,” ACM Trans. Graphics, vol. 23, pp. 679–688, 2004.
本文仅做学术分享,如有侵权,请联系删文。
下载1
在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。
下载2
在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计汇总等。
下载3
在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群。
一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、可答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~
3D视觉工坊 认证博客专家 算法 3D视觉 个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。