视觉十四讲:BA优化

tech2022-09-03  110

1.投影模型和BA代价函数

这个流程就是观测方程 之前抽象的记为: \(z = h(x, y)\) 现在给出具体的参数话过程,x指此时相机的位姿R,t,它对应的李代数为\(\xi\)。路标y即为这里的三维点p,而观测数据则是像素坐标(u,v)。 此次观测的误差为: \(e = z - h(\xi, p)\) 如果把其他时刻的观测量也考虑进来,则整体的代价函数为: 相当于对位姿和3D路标点同时进行优化,也就是所谓的BA。

2.BA的求解

在BA的目标函数上,把自变量定义成所有待优化的变量: \(x = [\xi_{1}, ..., \xi_{m}, p_{1}, ..., p_{n}]^{T}\) 相应的,增量方程中的\(\Delta x\)则是对整体自变量的增量,在这个意义下,当给一个增量时,目标函数为: 其中F表示整个代价函数在当前状态下对相机姿态的偏导数,而E代表该函数对路标点位置的偏导。 无论是使用G-N还是L-M方法,最后都将面对增量线性方程: \(H\Delta x = g\) 主要区别是H取 \(J^{T}J\)还是取 \(J^{T}J + \lambda I\)的形式。 以G-N为例,H矩阵为:

3.H矩阵的稀疏性

H的稀疏性是有雅可比矩阵J引起的。考虑其中一个e,这个误差项只描述了在\(\xi_{i}\)看到\(p_{j}\)这件事,只涉及到第i个相机位姿和第j个路标点,其余都是0 故:

假设一个场景有2个相机位姿(C1,C2)和6个路标点(P1,P2,P3,P4,P5,P6)观测过程为:

J为:

由上面的结构,我们把H分为4个矩阵块B,E,C:

于是,对应的线性方程组也可以变为如下形式:

4.G2O实践

1.开始前,先讲一下BAL数据集的数据格式 第一行表示有16个相机,22106个3D路标点 83718个观测点 第一列是代表第几个相机,第二列代表第几个路标点,后面是观测到的像素坐标。 该组数据一共是83718行。

后面的数据是16个相机的参数,9维,分别是-R(3维),t(3维),f(焦距),k1,k2畸变参数 一共16组数据。 再后面的数据,就是22106个路标点的3D坐标(3维)

2.bundle_adjustment_g2o.cpp

#include <g2o/core/base_vertex.h> #include <g2o/core/base_binary_edge.h> #include <g2o/core/block_solver.h> #include <g2o/core/optimization_algorithm_levenberg.h> #include <g2o/solvers/csparse/linear_solver_csparse.h> #include <g2o/core/robust_kernel_impl.h> #include <iostream> #include "common.h" #include "sophus/se3.hpp" using namespace Sophus; using namespace Eigen; using namespace std; /// 姿态和内参的结构 struct PoseAndIntrinsics { PoseAndIntrinsics() {} /// set from given data address explicit PoseAndIntrinsics(double *data_addr) { rotation = SO3d::exp(Vector3d(data_addr[0], data_addr[1], data_addr[2])); translation = Vector3d(data_addr[3], data_addr[4], data_addr[5]); focal = data_addr[6]; k1 = data_addr[7]; k2 = data_addr[8]; } /// 将估计值放入内存 void set_to(double *data_addr) { auto r = rotation.log(); for (int i = 0; i < 3; ++i) data_addr[i] = r[i]; for (int i = 0; i < 3; ++i) data_addr[i + 3] = translation[i]; data_addr[6] = focal; data_addr[7] = k1; data_addr[8] = k2; } SO3d rotation; Vector3d translation = Vector3d::Zero(); double focal = 0; double k1 = 0, k2 = 0; }; /// 位姿加相机内参的顶点,9维,前三维为so3,接下去为t, f, k1, k2 class VertexPoseAndIntrinsics : public g2o::BaseVertex<9, PoseAndIntrinsics> { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW; VertexPoseAndIntrinsics() {} virtual void setToOriginImpl() override { _estimate = PoseAndIntrinsics(); } //更新估计值 virtual void oplusImpl(const double *update) override { _estimate.rotation = SO3d::exp(Vector3d(update[0], update[1], update[2])) * _estimate.rotation; _estimate.translation += Vector3d(update[3], update[4], update[5]); _estimate.focal += update[6]; _estimate.k1 += update[7]; _estimate.k2 += update[8]; } /// 根据估计值投影一个点, Vector2d project(const Vector3d &point) { //把一个世界的3D点变换到当前相机点 Vector3d pc = _estimate.rotation * point + _estimate.translation; pc = -pc / pc[2]; //投影到前方的距离1的相机平面 double r2 = pc.squaredNorm(); //r2 //去畸变 1 + k1*r2 + k2*r2*r2 double distortion = 1.0 + r2 * (_estimate.k1 + _estimate.k2 * r2); //得到投影的像素坐标 return Vector2d(_estimate.focal * distortion * pc[0], _estimate.focal * distortion * pc[1]); } virtual bool read(istream &in) {} virtual bool write(ostream &out) const {} }; //路标3D点的顶点 class VertexPoint : public g2o::BaseVertex<3, Vector3d> { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW; VertexPoint() {} virtual void setToOriginImpl() override { _estimate = Vector3d(0, 0, 0); } //更新估计值 virtual void oplusImpl(const double *update) override { _estimate += Vector3d(update[0], update[1], update[2]); } virtual bool read(istream &in) {} virtual bool write(ostream &out) const {} }; //误差模型 观测维度2,类型为2d, 连接2个顶点类型 class EdgeProjection : public g2o::BaseBinaryEdge<2, Vector2d, VertexPoseAndIntrinsics, VertexPoint> { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW; //计算模型误差 ,投影-观测 virtual void computeError() override { auto v0 = (VertexPoseAndIntrinsics *) _vertices[0]; //位姿 auto v1 = (VertexPoint *) _vertices[1]; //路标 auto proj = v0->project(v1->estimate());//观测路标投影一个像素点 _error = proj - _measurement; //误差 } // use numeric derivatives virtual bool read(istream &in) {} virtual bool write(ostream &out) const {} }; void SolveBA(BALProblem &bal_problem); int main(int argc, char **argv) { if (argc != 2) { cout << "usage: bundle_adjustment_g2o bal_data.txt" << endl; return 1; } BALProblem bal_problem(argv[1]); //读取BAL数据集 bal_problem.Normalize(); //对相机参数和路标点3D数据进行处理 bal_problem.Perturb(0.1, 0.5, 0.5); //给路标3D点添加噪声 bal_problem.WriteToPLYFile("initial.ply"); //生成噪声ply文件 SolveBA(bal_problem); //BA优化 bal_problem.WriteToPLYFile("final.ply"); //生成优化后的ply文件 return 0; } void SolveBA(BALProblem &bal_problem) { const int point_block_size = bal_problem.point_block_size(); const int camera_block_size = bal_problem.camera_block_size(); double *points = bal_problem.mutable_points(); //3D点 double *cameras = bal_problem.mutable_cameras();//相机 // pose dimension 9, landmark is 3 typedef g2o::BlockSolver<g2o::BlockSolverTraits<9, 3>> BlockSolverType; typedef g2o::LinearSolverCSparse<BlockSolverType::PoseMatrixType> LinearSolverType; //线性求解器 // use LM auto solver = new g2o::OptimizationAlgorithmLevenberg( g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>())); g2o::SparseOptimizer optimizer; //图模型 optimizer.setAlgorithm(solver); //设置求解器 optimizer.setVerbose(true); //打开调试输出 /// build g2o problem const double *observations = bal_problem.observations(); //获取观测数据 // vertex vector<VertexPoseAndIntrinsics *> vertex_pose_intrinsics; vector<VertexPoint *> vertex_points; for (int i = 0; i < bal_problem.num_cameras(); ++i) { //16个相机位姿 VertexPoseAndIntrinsics *v = new VertexPoseAndIntrinsics(); double *camera = cameras + camera_block_size * i; v->setId(i); //顶点设置ID, v->setEstimate(PoseAndIntrinsics(camera)); //往图里增加顶点位姿,相机的位姿数据9维 optimizer.addVertex(v); vertex_pose_intrinsics.push_back(v); } for (int i = 0; i < bal_problem.num_points(); ++i) { //22106个路标点 VertexPoint *v = new VertexPoint(); double *point = points + point_block_size * i; v->setId(i + bal_problem.num_cameras()); //设置ID,不能和上面重复,直接往后排 v->setEstimate(Vector3d(point[0], point[1], point[2])); //路标点 3维 // g2o在BA中需要手动设置待Marg的顶点 v->setMarginalized(true); //路标要被边缘化计算,所以设置边缘化属性为true optimizer.addVertex(v); vertex_points.push_back(v); } // edge for (int i = 0; i < bal_problem.num_observations(); ++i) { //增加边,总共83718个观测数据 EdgeProjection *edge = new EdgeProjection; edge->setVertex(0, vertex_pose_intrinsics[bal_problem.camera_index()[i]]); //设置链接的顶点,取出标号,对应数据 edge->setVertex(1, vertex_points[bal_problem.point_index()[i]]); //设置链接的顶点 edge->setMeasurement(Vector2d(observations[2 * i + 0], observations[2 * i + 1])); //观测数据 edge->setInformation(Matrix2d::Identity()); //信息矩阵:协方差矩阵之逆 edge->setRobustKernel(new g2o::RobustKernelHuber()); optimizer.addEdge(edge); } optimizer.initializeOptimization(); optimizer.optimize(40); //迭代40次 // set to bal problem for (int i = 0; i < bal_problem.num_cameras(); ++i) { double *camera = cameras + camera_block_size * i; auto vertex = vertex_pose_intrinsics[i]; auto estimate = vertex->estimate(); //获取位姿的最优值9维 estimate.set_to(camera); } for (int i = 0; i < bal_problem.num_points(); ++i) { double *point = points + point_block_size * i; auto vertex = vertex_points[i]; //获取3D路标的最优值3维 for (int k = 0; k < 3; ++k) point[k] = vertex->estimate()[k]; //路标覆盖保存 } }

3.common.cpp

#include <cstdio> #include <fstream> #include <iostream> #include <string> #include <vector> #include <Eigen/Core> #include <Eigen/Dense> #include "common.h" #include "rotation.h" #include "random.h" typedef Eigen::Map<Eigen::VectorXd> VectorRef; typedef Eigen::Map<const Eigen::VectorXd> ConstVectorRef; //这个函数从fptr文件中读出一个format类型的值,赋值给参数value,从开头开始,找到一个合适的就停止。 //这个函数主要是给BALProblem()构造函数读取txt数据文件用的,比较简陋 template<typename T> void FscanfOrDie(FILE *fptr, const char *format, T *value) { int num_scanned = fscanf(fptr, format, value); if (num_scanned != 1) std::cerr << "Invalid UW data file. "; } //给一个三维向量加入噪声,很简单xyz依次加入随机值就好了。定义这个的目的是为了后面的Perturb()函数在增加噪声时, // 是分开对路标点,相机的旋转,相机的平移分别加入噪声的,并且这三个量都是三维的,所以定义一个三维向量添加噪声的函数 void PerturbPoint3(const double sigma, double *point) { for (int i = 0; i < 3; ++i) point[i] += RandNormal() * sigma; } double Median(std::vector<double> *data) { int n = data->size(); std::vector<double>::iterator mid_point = data->begin() + n / 2; std::nth_element(data->begin(), mid_point, data->end()); return *mid_point; } BALProblem::BALProblem(const std::string &filename, bool use_quaternions) { FILE *fptr = fopen(filename.c_str(), "r"); if (fptr == NULL) { std::cerr << "Error: unable to open file " << filename; return; }; // This wil die horribly on invalid files. Them's the breaks. FscanfOrDie(fptr, "%d", &num_cameras_); //读取总的相机数 FscanfOrDie(fptr, "%d", &num_points_); //读取总的路标数 FscanfOrDie(fptr, "%d", &num_observations_);//读取总的观测数据个数 std::cout << "Header: " << num_cameras_ << " " << num_points_ << " " << num_observations_; point_index_ = new int[num_observations_]; //取出3D路标点的标号 camera_index_ = new int[num_observations_]; //相机的标号 observations_ = new double[2 * num_observations_]; //观测的像素点 num_parameters_ = 9 * num_cameras_ + 3 * num_points_;//每个相机9个参数,每个路标3个参数 parameters_ = new double[num_parameters_]; //参数的总大小 for (int i = 0; i < num_observations_; ++i) { //拷贝数据 FscanfOrDie(fptr, "%d", camera_index_ + i); //第几个相机 FscanfOrDie(fptr, "%d", point_index_ + i); //第几个路标 for (int j = 0; j < 2; ++j) { FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j);//观测到的像素坐标 } } //每个相机是一组9个参数,-R:3维(罗德里格斯向量) t:3维 f,k1,k2。后面是3D路标的数据3维 for (int i = 0; i < num_parameters_; ++i) { FscanfOrDie(fptr, "%lf", parameters_ + i); } fclose(fptr); use_quaternions_ = use_quaternions; if (use_quaternions) { // Switch the angle-axis rotations to quaternions. num_parameters_ = 10 * num_cameras_ + 3 * num_points_; double *quaternion_parameters = new double[num_parameters_];//指针指向一个新的四元数数组 double *original_cursor = parameters_; //指针指向原始数据参数数组 double *quaternion_cursor = quaternion_parameters;//指针指向指向四元数数组的指针 for (int i = 0; i < num_cameras_; ++i) { AngleAxisToQuaternion(original_cursor, quaternion_cursor); //R转换为四元数 quaternion_cursor += 4; original_cursor += 3; for (int j = 4; j < 10; ++j) { *quaternion_cursor++ = *original_cursor++; } } // Copy the rest of the points. for (int i = 0; i < 3 * num_points_; ++i) { *quaternion_cursor++ = *original_cursor++; } // Swap in the quaternion parameters. delete[]parameters_; parameters_ = quaternion_parameters; } } //构造函数读入数据txt,将数据存入类成员中。猜测这里是反向过程,由类成员中存储的数据,生成一个待优化数据.txt。 void BALProblem::WriteToFile(const std::string &filename) const { FILE *fptr = fopen(filename.c_str(), "w"); if (fptr == NULL) { std::cerr << "Error: unable to open file " << filename; return; } fprintf(fptr, "%d %d %d %d\n", num_cameras_, num_cameras_, num_points_, num_observations_); for (int i = 0; i < num_observations_; ++i) { fprintf(fptr, "%d %d", camera_index_[i], point_index_[i]); for (int j = 0; j < 2; ++j) { fprintf(fptr, " %g", observations_[2 * i + j]); } fprintf(fptr, "\n"); } for (int i = 0; i < num_cameras(); ++i) { double angleaxis[9]; if (use_quaternions_) { //OutPut in angle-axis format. QuaternionToAngleAxis(parameters_ + 10 * i, angleaxis); memcpy(angleaxis + 3, parameters_ + 10 * i + 4, 6 * sizeof(double)); } else { memcpy(angleaxis, parameters_ + 9 * i, 9 * sizeof(double)); } for (int j = 0; j < 9; ++j) { fprintf(fptr, "%.16g\n", angleaxis[j]); } } const double *points = parameters_ + camera_block_size() * num_cameras_; for (int i = 0; i < num_points(); ++i) { const double *point = points + i * point_block_size(); for (int j = 0; j < point_block_size(); ++j) { fprintf(fptr, "%.16g\n", point[j]); } } fclose(fptr); } //将相机的世界坐标位移和3D路标点写入文件 // Write the problem to a PLY file for inspection in Meshlab or CloudCompare void BALProblem::WriteToPLYFile(const std::string &filename) const { std::ofstream of(filename.c_str()); of << "ply" << '\n' << "format ascii 1.0" << '\n' << "element vertex " << num_cameras_ + num_points_ << '\n' << "property float x" << '\n' << "property float y" << '\n' << "property float z" << '\n' << "property uchar red" << '\n' << "property uchar green" << '\n' << "property uchar blue" << '\n' << "end_header" << std::endl; // Export extrinsic data (i.e. camera centers) as green points. double angle_axis[3]; double center[3]; for (int i = 0; i < num_cameras(); ++i) { const double *camera = cameras() + camera_block_size() * i; CameraToAngelAxisAndCenter(camera, angle_axis, center); of << center[0] << ' ' << center[1] << ' ' << center[2] << "0 255 0" << '\n'; } // Export the structure (i.e. 3D Points) as white points. const double *points = parameters_ + camera_block_size() * num_cameras_; for (int i = 0; i < num_points(); ++i) { const double *point = points + i * point_block_size(); for (int j = 0; j < point_block_size(); ++j) { of << point[j] << ' '; } of << "255 255 255\n"; } of.close(); } /** * * 由camera数据中的旋转向量和平移向量解析出相机世界坐标系下的姿态(依旧是旋转向量)和位置(世界坐标系下的xyz),也是用于生成点云用的 * @param camera 要解析的相机参数,前三维旋转,接着三维平移,这里指用到这6维 * @param angle_axis 解析出的相机姿态承接数组,也是旋转向量形式 * @param center 解析出来的相机原点在世界坐标系下的坐标承接数组,XYZ */ void BALProblem::CameraToAngelAxisAndCenter(const double *camera, double *angle_axis, double *center) const { VectorRef angle_axis_ref(angle_axis, 3); if (use_quaternions_) { QuaternionToAngleAxis(camera, angle_axis); } else { angle_axis_ref = ConstVectorRef(camera, 3); //读取R } Eigen::VectorXd inverse_rotation = -angle_axis_ref; //-R,BAL文件定义,取负号 /** * 这里解释一下center的计算逻辑: * center是指相机原点在世界坐标系下的坐标,那么定义一下: * PW_center, 世界坐标系下相机原点的坐标 * PC_center, 相机坐标系下的相机原点坐标 * 它俩的关系是什么呢? * PW_center*R+t = PC_center * 反向过程就是 * PC_center * T^(-1) = PW_center * 那么相机坐标系的原点,在世界坐标系下的坐标就可以求出来了 * [R^(T) -R^(T)*t ] * [相机原点也就是000] * [0 1 ] [ 1 ] * 结果就是 -R^(T) * t *由旋转向量形式表示的旋转,反向过程(也就是求逆)就是旋转向量取负即可。 * 所以结果就是cos(theta) * t + ( 1 - cos(theta) ) (n 点乘 t) n + sin(theta) ( n 叉乘 t ) */ AngleAxisRotatePoint(inverse_rotation.data(), //R camera + camera_block_size() - 6, //平移t的数据 center); //结果 //最后加上负号。记住,map类型构造的是引用,能直接对原构造数组进行操作的。 //说一下这句,这句还是,用center数组的前3维,去构造一个无名的map类型矩阵,并且后面直接跟上*-1操作。 //VectorRef是Map的一个define。 //记住Map构造出来是引用,能对原始值直接操作。 VectorRef(center, 3) *= -1.0; } /** * 由世界坐标系下的相机姿态和原点位置,生成一个camera数据 * @param angle_axis 世界坐标到相机坐标变化的旋转向量数据 * @param center 相机中心在世界坐标系下的位置坐标 * @param camera 承接数据的camera数组,由于这里只是生成旋转和平移,所以是camera的前6维 */ void BALProblem::AngleAxisAndCenterToCamera(const double *angle_axis, const double *center, double *camera) const { ConstVectorRef angle_axis_ref(angle_axis, 3); if (use_quaternions_) { AngleAxisToQuaternion(angle_axis, camera); } else { VectorRef(camera, 3) = angle_axis_ref; } //这里相机姿态R没有取反,原始数据是-R,代表是相机坐标系对世界坐标系的变换 /* 和上面类似 * 结果就是 -R^(T) * t * * 所以结果就是cos(theta) * t + ( 1 - cos(theta) ) (n 点乘 t) n + sin(theta) ( n 叉乘 t ) */ //该函数直接修改了储存相机平移数据的数据 AngleAxisRotatePoint(angle_axis, center, camera + camera_block_size() - 6); //最后再取个反 VectorRef(camera + camera_block_size() - 6, 3) *= -1.0; } void BALProblem::Normalize() { // Compute the marginal median of the geometry std::vector<double> tmp(num_points_); Eigen::Vector3d median; double *points = mutable_points();//获取路标3D点的位置 for (int i = 0; i < 3; ++i) { for (int j = 0; j < num_points_; ++j) { tmp[j] = points[3 * j + i]; } median(i) = Median(&tmp); //返回中位数,如果是偶数,取平均值 } for (int i = 0; i < num_points_; ++i) { VectorRef point(points + 3 * i, 3); tmp[i] = (point - median).lpNorm<1>(); //每个点 - 中位数 的LP范数 } const double median_absolute_deviation = Median(&tmp); //再取中位数 // Scale so that the median absolute deviation of the resulting // reconstruction is 100 const double scale = 100.0 / median_absolute_deviation; // X = scale * (X - median) for (int i = 0; i < num_points_; ++i) { VectorRef point(points + 3 * i, 3); // point = scale * (point - median); //对每个3D点进行处理,MAP是引用,会改变原数据 } double *cameras = mutable_cameras(); //相机参数 double angle_axis[3]; double center[3]; for (int i = 0; i < num_cameras_; ++i) { double *camera = cameras + camera_block_size() * i; //angle_axis赋值了R,center为结果 CameraToAngelAxisAndCenter(camera, angle_axis, center); //求解世界坐标系下的相机中心坐标 // center = scale * (center - median) VectorRef(center, 3) = scale * (VectorRef(center, 3) - median); //因为世界路标3D点做了处理,所以这个也要处理 //最终,修改了*camera指向储存的数据的平移数据 AngleAxisAndCenterToCamera(angle_axis, center, camera); //因为世界坐标进行处理了,所以将处理后的数据转到相机坐标去 } } //添加噪声 void BALProblem::Perturb(const double rotation_sigma, const double translation_sigma, const double point_sigma) { assert(point_sigma >= 0.0); assert(rotation_sigma >= 0.0); assert(translation_sigma >= 0.0); double *points = mutable_points(); if (point_sigma > 0) { for (int i = 0; i < num_points_; ++i) { PerturbPoint3(point_sigma, points + 3 * i); } } //这里相机是被分成两块,旋转和平移, //旋转是考虑到四元数形式,增加了一步用CameraToAngelAxisAndCenter()从camera中取出三维的angle_axis, //然后添加噪声,添加完后再用AngleAxisAndCenterToCamera()重构camera参数 //平移部分就直接用PerturbPoint3()添加了 for (int i = 0; i < num_cameras_; ++i) { double *camera = mutable_cameras() + camera_block_size() * i; double angle_axis[3]; double center[3]; // Perturb in the rotation of the camera in the angle-axis // representation CameraToAngelAxisAndCenter(camera, angle_axis, center); if (rotation_sigma > 0.0) { PerturbPoint3(rotation_sigma, angle_axis); } AngleAxisAndCenterToCamera(angle_axis, center, camera); if (translation_sigma > 0.0) PerturbPoint3(translation_sigma, camera + camera_block_size() - 6); } }

common.h

#pragma once /// 从文件读入BAL dataset原始数据,然后进行分割储存 class BALProblem { public: /// load bal data from text file explicit BALProblem(const std::string &filename, bool use_quaternions = false); ~BALProblem() { delete[] point_index_; delete[] camera_index_; delete[] observations_; delete[] parameters_; } /// save results to text file void WriteToFile(const std::string &filename) const; /// save results to ply pointcloud void WriteToPLYFile(const std::string &filename) const; void Normalize(); void Perturb(const double rotation_sigma, const double translation_sigma, const double point_sigma); int camera_block_size() const { return use_quaternions_ ? 10 : 9; } int point_block_size() const { return 3; } int num_cameras() const { return num_cameras_; } int num_points() const { return num_points_; } int num_observations() const { return num_observations_; } int num_parameters() const { return num_parameters_; } const int *point_index() const { return point_index_; } const int *camera_index() const { return camera_index_; } const double *observations() const { return observations_; } const double *parameters() const { return parameters_; } const double *cameras() const { return parameters_; } const double *points() const { return parameters_ + camera_block_size() * num_cameras_; } /// camera参数的起始地址 double *mutable_cameras() { return parameters_; } double *mutable_points() { return parameters_ + camera_block_size() * num_cameras_; } double *mutable_camera_for_observation(int i) { return mutable_cameras() + camera_index_[i] * camera_block_size(); } double *mutable_point_for_observation(int i) { return mutable_points() + point_index_[i] * point_block_size(); } const double *camera_for_observation(int i) const { return cameras() + camera_index_[i] * camera_block_size(); } const double *point_for_observation(int i) const { return points() + point_index_[i] * point_block_size(); } private: void CameraToAngelAxisAndCenter(const double *camera, double *angle_axis, double *center) const; void AngleAxisAndCenterToCamera(const double *angle_axis, const double *center, double *camera) const; int num_cameras_; int num_points_; int num_observations_; int num_parameters_; bool use_quaternions_; int *point_index_; // 每个observation对应的point index int *camera_index_; // 每个observation对应的camera index double *observations_; double *parameters_; };

4.random.h

#ifndef RAND_H #define RAND_H #include <math.h> #include <stdlib.h> inline double RandDouble() { double r = static_cast<double>(rand()); return r / RAND_MAX; } inline double RandNormal() { double x1, x2, w; do{ x1 = 2.0 * RandDouble() - 1.0; x2 = 2.0 * RandDouble() - 1.0; w = x1 * x1 + x2 * x2; }while( w >= 1.0 || w == 0.0); w = sqrt((-2.0 * log(w))/w); return x1 * w; } #endif // random.h

rotation.h

#ifndef ROTATION_H #define ROTATION_H #include <algorithm> #include <cmath> #include <limits> // // math functions needed for rotation conversion. // dot and cross production template<typename T> inline T DotProduct(const T x[3], const T y[3]) { return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]); } template<typename T> inline void CrossProduct(const T x[3], const T y[3], T result[3]) { result[0] = x[1] * y[2] - x[2] * y[1]; result[1] = x[2] * y[0] - x[0] * y[2]; result[2] = x[0] * y[1] - x[1] * y[0]; } // // Converts from a angle anxis to quaternion : template<typename T> inline void AngleAxisToQuaternion(const T *angle_axis, T *quaternion) { const T &a0 = angle_axis[0]; const T &a1 = angle_axis[1]; const T &a2 = angle_axis[2]; const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2; if (theta_squared > T(std::numeric_limits<double>::epsilon())) { const T theta = sqrt(theta_squared); const T half_theta = theta * T(0.5); const T k = sin(half_theta) / theta; quaternion[0] = cos(half_theta); quaternion[1] = a0 * k; quaternion[2] = a1 * k; quaternion[3] = a2 * k; } else { // in case if theta_squared is zero const T k(0.5); quaternion[0] = T(1.0); quaternion[1] = a0 * k; quaternion[2] = a1 * k; quaternion[3] = a2 * k; } } template<typename T> inline void QuaternionToAngleAxis(const T *quaternion, T *angle_axis) { const T &q1 = quaternion[1]; const T &q2 = quaternion[2]; const T &q3 = quaternion[3]; const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3; // For quaternions representing non-zero rotation, the conversion // is numercially stable if (sin_squared_theta > T(std::numeric_limits<double>::epsilon())) { const T sin_theta = sqrt(sin_squared_theta); const T &cos_theta = quaternion[0]; // If cos_theta is negative, theta is greater than pi/2, which // means that angle for the angle_axis vector which is 2 * theta // would be greater than pi... const T two_theta = T(2.0) * ((cos_theta < 0.0) ? atan2(-sin_theta, -cos_theta) : atan2(sin_theta, cos_theta)); const T k = two_theta / sin_theta; angle_axis[0] = q1 * k; angle_axis[1] = q2 * k; angle_axis[2] = q3 * k; } else { // For zero rotation, sqrt() will produce NaN in derivative since // the argument is zero. By approximating with a Taylor series, // and truncating at one term, the value and first derivatives will be // computed correctly when Jets are used.. const T k(2.0); angle_axis[0] = q1 * k; angle_axis[1] = q2 * k; angle_axis[2] = q3 * k; } } template<typename T> inline void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) { const T theta2 = DotProduct(angle_axis, angle_axis); if (theta2 > T(std::numeric_limits<double>::epsilon())) { // Away from zero, use the rodriguez formula // // result = pt costheta + // (w x pt) * sintheta + // w (w . pt) (1 - costheta) // // We want to be careful to only evaluate the square root if the // norm of the angle_axis vector is greater than zero. Otherwise // we get a division by zero. // const T theta = sqrt(theta2); //旋转角度,单位弧度 const T costheta = cos(theta); const T sintheta = sin(theta); const T theta_inverse = 1.0 / theta; const T w[3] = {angle_axis[0] * theta_inverse, //归一化 angle_axis[1] * theta_inverse, angle_axis[2] * theta_inverse}; // Explicitly inlined evaluation of the cross product for // performance reasons. /*const T w_cross_pt[3] = { w[1] * pt[2] - w[2] * pt[1], w[2] * pt[0] - w[0] * pt[2], w[0] * pt[1] - w[1] * pt[0] };*/ T w_cross_pt[3]; CrossProduct(w, pt, w_cross_pt); //t 叉乘 n const T tmp = DotProduct(w, pt) * (T(1.0) - costheta); //t 点乘 n // (w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta); result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp; result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp; result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp; } else { // Near zero, the first order Taylor approximation of the rotation // matrix R corresponding to a vector w and angle w is // // R = I + hat(w) * sin(theta) // // But sintheta ~ theta and theta * w = angle_axis, which gives us // // R = I + hat(w) // // and actually performing multiplication with the point pt, gives us // R * pt = pt + w x pt. // // Switching to the Taylor expansion near zero provides meaningful // derivatives when evaluated using Jets. // // Explicitly inlined evaluation of the cross product for // performance reasons. /*const T w_cross_pt[3] = { angle_axis[1] * pt[2] - angle_axis[2] * pt[1], angle_axis[2] * pt[0] - angle_axis[0] * pt[2], angle_axis[0] * pt[1] - angle_axis[1] * pt[0] };*/ T w_cross_pt[3]; CrossProduct(angle_axis, pt, w_cross_pt); result[0] = pt[0] + w_cross_pt[0]; result[1] = pt[1] + w_cross_pt[1]; result[2] = pt[2] + w_cross_pt[2]; } } #endif // rotation.h

5.CMakeLists.txt

cmake_minimum_required(VERSION 2.8) project(bundle_adjustment) set(CMAKE_BUILD_TYPE "Release") set(CMAKE_CXX_FLAGS "-O3 -std=c++11") LIST(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake) Find_Package(G2O REQUIRED) Find_Package(Eigen3 REQUIRED) Find_Package(Ceres REQUIRED) Find_Package(Sophus REQUIRED) Find_Package(CSparse REQUIRED) SET(G2O_LIBS g2o_csparse_extension g2o_stuff g2o_core cxsparse) include_directories(${PROJECT_SOURCE_DIR} ${EIGEN3_INCLUDE_DIR} ${CSPARSE_INCLUDE_DIR}) add_library(bal_common common.cpp) add_executable(bundle_adjustment_g2o bundle_adjustment_g2o.cpp) add_executable(bundle_adjustment_ceres bundle_adjustment_ceres.cpp) target_link_libraries(bundle_adjustment_ceres ${CERES_LIBRARIES} bal_common) target_link_libraries(bundle_adjustment_g2o ${G2O_LIBS} bal_common)
最新回复(0)