链接: 原博客. 讲解的比较清晰!!!!收藏了
简单状态机按照如下工作流程:
它包括一个初始化伪状态,一个正常状态和一个结束状态。如下代码是上述图表中流程的一种实现。
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct Event1 {}; // ----- State machine struct Sm1_:msmf::state_machine_def<Sm1_> { // States struct State1:msmf::state<> { // Entry action template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State1::on_entry()" << std::endl; } // Exit action template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { std::cout << "State1::on_exit()" << std::endl; } }; struct End:msmf::terminate_state<> {}; // Set initial state typedef State1 initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, Event1, End, msmf::none, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<Sm1_> Sm1; void test() { Sm1 sm1; sm1.start(); std::cout << "> Send Event1" << std::endl; sm1.process_event(Event1()); } } int main() { test(); return 0; } // Output: // // State1::on_entry() // > Send Event1 // State1::on_exit()Sm1_ 是一个状态机的定义,在 Sm1_,有两个状态,state1 和 End。初始伪状态是定义在一下代码行: typedef State1 initial_state; 此初始状态类型定义意味着状态机 Sm1 从状态 State1 开始。
考虑如下图表:
从初始状态转变到 State1 有一个动作。为了实现这种类型的状态机,你需要额外的代码。
A transition from an initial pseudo state to State1 has an action. To implement this kind of state machine, you need additional codes.
如下图表和代码展示了如何实现一个初始状态转变的动作:
在如下代码片段中,此初始状态类型定义仅仅表明状态机从State1开始,此初始状态定义并没有引入一个初始伪状态。 // Set initial state typedef State1 initial_state;
为了实现从 State1 和 初始伪状态转换的转换动作,需要在代码中定义初始伪状态。Boost.Msm 不能直接支持初始伪状态,但是可以用一个正常状态来替代。则将原始图表改写为如下图表:
你不必写此模型,此模型的目的在于帮助你更好理解下面的代码的实现过程:
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct Event1 {}; // ----- State machine struct Sm1_:msmf::state_machine_def<Sm1_> { // States struct Init:msmf::state<> {}; struct State1:msmf::state<> { // Entry action template <class Event,class Fsm> void on_entry(Event const&, Fsm&) { std::cout << "State1::on_entry()" << std::endl; } // Exit action template <class Event,class Fsm> void on_exit(Event const&, Fsm&) { std::cout << "State1::on_exit()" << std::endl; } }; // Set initial state typedef Init initial_state; // Actions struct InitAction { template <class Event, class Fsm, class SourceState, class TargetState> void operator()(Event const&, Fsm&, SourceState&, TargetState&) const { std::cout << "InitAction()" << std::endl; } }; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < Init, msmf::none, State1, InitAction, msmf::none >, msmf::Row < State1, Event1, State1, msmf::none, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<Sm1_> Sm1; void test() { Sm1 sm1; sm1.start(); std::cout << "> Send Event1" << std::endl; sm1.process_event(Event1()); } } int main() { test(); return 0; } // Output: // // InitAction() // State1::on_entry() // > Send Event1 // State1::on_exit() // State1::on_entry()看下面代码行: msmf::Row < Init, msmf::none, State1, InitAction, msmf::none >, 这是一个状态转换表行。这里最重要的是其事件为msmf::none。这意味着当状态机处于Init状态时,自动触发从 Init 到 state1 的转换。
Boost.Msm的事件句柄能够重载。on_entry 和 on_exit 动作的句柄可以通过事件类型匹配。守卫条件和动作因子能够通过 Event,SourceState 和 TargetState 来匹配。
让我们看如下图表:
所有的转变都有同样的守卫条件和动作因子。 以上图表的代码实现如下:
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct Event1 {}; struct Event2 {}; struct InitialEvent {}; // ----- State machine struct Sm1_:msm::front::state_machine_def<Sm1_> { typedef InitialEvent initial_event; // States struct State1:msm::front::state<> { // Entry action template <class Fsm> void on_entry(InitialEvent const&, Fsm&) const { std::cout << "State1::on_entry(InitialEvent)" << std::endl; } template <class Fsm> void on_entry(Event1 const&, Fsm&) const { std::cout << "State1::on_entry(Event1)" << std::endl; } template <class Fsm> void on_entry(Event2 const&, Fsm&) const { std::cout << "State1::on_entry(Event2)" << std::endl; } // Exit action template <class Fsm> void on_exit(Event1 const&, Fsm&) const { std::cout << "State1::on_exit(Event1)" << std::endl; } template <class Fsm> void on_exit(Event2 const&, Fsm&) const { std::cout << "State1::on_exit(Event2)" << std::endl; } }; struct State2:msm::front::state<> { // Entry action template <class Fsm> void on_entry(Event1 const&, Fsm&) const { std::cout << "State2::on_entry(Event1)" << std::endl; } template <class Fsm> void on_entry(Event2 const&, Fsm&) const { std::cout << "State2::on_entry(Event2)" << std::endl; } // Exit action template <class Fsm> void on_exit(Event1 const&, Fsm&) const { std::cout << "State2::on_exit(Event1)" << std::endl; } template <class Fsm> void on_exit(Event2 const&, Fsm&) const { std::cout << "State2::on_exit(Event2)" << std::endl; } }; struct Action1 { template <class Fsm> void operator()(Event1 const& e, Fsm&, State1&, State2&) const { std::cout << "Action1(Event1, Fsm, State1, State2)" << std::endl; } template <class Fsm> void operator()(Event2 const& e, Fsm&, State1&, State2&) const { std::cout << "Action1(Event2, Fsm, State1, State2)" << std::endl; } template <class Fsm> void operator()(Event1 const& e, Fsm&, State2&, State1&) const { std::cout << "Action1(Event1, Fsm, State2, State1)" << std::endl; } template <class Fsm> void operator()(Event2 const& e, Fsm&, State2&, State1&) const { std::cout << "Action1(Event2, Fsm, State2, State1)" << std::endl; } }; struct Guard1 { template <class Fsm> bool operator()(Event1 const& e, Fsm&, State1&, State2&) const { std::cout << "Guard1(Event1, Fsm, State1, State2)" << std::endl; return true; } template <class Fsm> bool operator()(Event2 const& e, Fsm&, State1&, State2&) const { std::cout << "Guard1(Event2, Fsm, State1, State2)" << std::endl; return true; } template <class Fsm> bool operator()(Event1 const& e, Fsm&, State2&, State1&) const { std::cout << "Guard1(Event1, Fsm, State2, State1)" << std::endl; return true; } template <class Fsm> bool operator()(Event2 const& e, Fsm&, State2&, State1&) const { std::cout << "Guard1(Event2, Fsm, State2, State1)" << std::endl; return true; } }; // Set initial state typedef State1 initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, Event1, State2, Action1, Guard1 >, msmf::Row < State1, Event2, State2, Action1, Guard1 >, msmf::Row < State2, Event1, State1, Action1, Guard1 >, msmf::Row < State2, Event2, State1, Action1, Guard1 > > {}; }; // Pick a back-end typedef msm::back::state_machine<Sm1_> Sm1; void test() { Sm1 sm1; sm1.start(); std::cout << "> Send Event1" << std::endl; sm1.process_event(Event1()); std::cout << "> Send Event1" << std::endl; sm1.process_event(Event1()); std::cout << "> Send Event2" << std::endl; sm1.process_event(Event2()); std::cout << "> Send Event2" << std::endl; sm1.process_event(Event2()); } } int main() { test(); return 0; } // Output: // // State1::on_entry(InitialEvent) // > Send Event1 // Guard1(Event1, Fsm, State1, State2) // State1::on_exit(Event1) // Action1(Event1, Fsm, State1, State2) // State2::on_entry(Event1) // > Send Event1 // Guard1(Event1, Fsm, State2, State1) // State2::on_exit(Event1) // Action1(Event1, Fsm, State2, State1) // State1::on_entry(Event1) // > Send Event2 // Guard1(Event2, Fsm, State1, State2) // State1::on_exit(Event2) // Action1(Event2, Fsm, State1, State2) // State2::on_entry(Event2) // > Send Event2 // Guard1(Event2, Fsm, State2, State1) // State2::on_exit(Event2) // Action1(Event2, Fsm, State2, State1) // State1::on_entry(Event2)当你不想关心具体的事件、原状态和目标状态时,你能用如下模板参数:
struct State1:msm::front::state<> { // Entry action template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State1::on_entry()" << std::endl; } }; // Actions struct Action1 { template <class Event, class Fsm, class SourceState, class TargetState> void operator()(Event const&, Fsm&, SourceState&, TargetState&) const { std::cout << "Action1()" << std::endl; } }Event1/Action1 是一个自转变,Event2/Action2 是一个内部转变。当内部转变发生时,entry 和 exit 动作不会被调用。与此对比,自转变会引起 entry 和 exit 的调用。
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct Event1 {}; struct Event2 {}; // ----- State machine struct Sm1_:msmf::state_machine_def<Sm1_> { // States struct State1:msmf::state<> { // Entry action template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State1::on_entry()" << std::endl; } // Exit action template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { std::cout << "State1::on_exit()" << std::endl; } }; // Set initial state typedef State1 initial_state; // Actions struct Action1 { template <class Event, class Fsm, class SourceState, class TargetState> void operator()(Event const&, Fsm&, SourceState&, TargetState&) const { std::cout << "Action1()" << std::endl; } }; struct Action2 { template <class Event, class Fsm, class SourceState, class TargetState> void operator()(Event const&, Fsm&, SourceState&, TargetState&) const { std::cout << "Action2()" << std::endl; } }; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, Event1, State1, Action1, msmf::none >, msmf::Row < State1, Event2, msmf::none, Action2, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<Sm1_> Sm1; void test() { Sm1 sm1; sm1.start(); std::cout << "> Send Event1" << std::endl; sm1.process_event(Event1()); std::cout << "> Send Event2" << std::endl; sm1.process_event(Event2()); } } int main() { test(); return 0; } // Output: // // State1::on_entry() // > Send Event1 // State1::on_exit() // Action1() // State1::on_entry() // > Send Event2 // Action2()为了描述自转变,设置 Start 和 Next 为同样的状态在状态转换表中。而对于内部转变,设置 Next 为 none。none是被定义在 boost::msm::front。
// Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard // Self transition msmf::Row < State1, Event1, State1, Action1, msmf::none >, // Internal transition msmf::Row < State1, Event2, msmf::none, Action2, msmf::none > > {};为了实现内部转换有两种不同方式。一种是在状态机中利用正常转变表并设置其 Next 状态为 none。此方法得优势在于此转变与其它转变放在一起,增强了其易读性。
另一种方式是使用内部转变表,此表仅仅用于内部转变。该方法允许我们重用内部转变和状态重用。另外内部状态转换表优先于正常状态转换表。
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // Events struct Event1 {}; // ----- State machine struct Sm1_:msmf::state_machine_def<Sm1_> { struct State1_:msmf::state_machine_def<State1_> { // Guards struct InternalGuard1 { template <class Event, class Fsm, class SourceState, class TargetState> bool operator()(Event const&, Fsm&, SourceState&, TargetState&) const { std::cout << "Internal Transition Table's Guard1" << std::endl; return false; } }; struct InternalGuard2 { template <class Event, class Fsm, class SourceState, class TargetState> bool operator()(Event const&, Fsm&, SourceState&, TargetState&) const { std::cout << "Internal Transition Table's Guard2" << std::endl; return false; } }; // Internal Transition table struct internal_transition_table:mpl::vector< // Event Action Guard msmf::Internal < Event1, msmf::none, InternalGuard1 >, msmf::Internal < Event1, msmf::none, InternalGuard2 > > {}; }; // Set initial state typedef State1_ initial_state; // Guards struct Guard1 { template <class Event, class Fsm, class SourceState, class TargetState> bool operator()(Event const&, Fsm&, SourceState&, TargetState&) const { std::cout << "Transition Table's Guard1" << std::endl; return false; } }; struct Guard2 { template <class Event, class Fsm, class SourceState, class TargetState> bool operator()(Event const&, Fsm&, SourceState&, TargetState&) const { std::cout << "Transition Table's Guard2" << std::endl; return false; } }; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1_, Event1, msmf::none, msmf::none, Guard1 >, msmf::Row < State1_, Event1, msmf::none, msmf::none, Guard2 > > {}; }; // back-end typedef msm::back::state_machine<Sm1_> Sm1; void test() { Sm1 sm1; sm1.start(); std::cout << "> Send Event1" << std::endl; sm1.process_event(Event1()); } } int main() { test(); return 0; } // Output: // // > Send Event1 // Internal Transition Table's Guard2 // Internal Transition Table's Guard1 // Transition Table's Guard2 // Transition Table's Guard1Boost.Msm 不能直接支持连接点伪状态。如果想实现连接点伪状态,必须要转变 UML 模型。此转变过程十分简单。从于连接点伪状态相关的转变中分离每个独立的转变。 例如,关于如下图表:
它可以被转换为以下图表:
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // Events struct Event1 { Event1(int val):val(val) {} int val; }; // ----- State machine struct Sm1_:msmf::state_machine_def<Sm1_> { struct State1_:msmf::state_machine_def<State1_>{}; // Set initial state typedef State1_ initial_state; // Guards struct Guard1 { template <class Event, class Fsm, class SourceState, class TargetState> bool operator()(Event const& e, Fsm&, SourceState&, TargetState&) const { if (e.val == 1) return true; return false; } }; struct Guard2 { template <class Event, class Fsm, class SourceState, class TargetState> bool operator()(Event const& e, Fsm&, SourceState&, TargetState&) const { if (e.val == 2) return true; return false; } }; // Actions struct Action1 { template <class Event, class Fsm, class SourceState, class TargetState> void operator()(Event const&, Fsm&, SourceState&, TargetState&) const { std::cout << "Action1" << std::endl; } }; struct Action2 { template <class Event, class Fsm, class SourceState, class TargetState> void operator()(Event const&, Fsm&, SourceState&, TargetState&) const { std::cout << "Action2" << std::endl; } }; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1_, Event1, State1_, Action1, Guard1 >, msmf::Row < State1_, Event1, State1_, Action2, Guard2 > > {}; }; // back-end typedef msm::back::state_machine<Sm1_> Sm1; void test() { Sm1 sm1; sm1.start(); std::cout << "> Send Event1(1)" << std::endl; sm1.process_event(Event1(1)); std::cout << "> Send Event1(2)" << std::endl; sm1.process_event(Event1(2)); } } int main() { test(); return 0; } // Output: // // > Send Event1(1) // Action1 // > Send Event1(2) // Action2有时可能需要用 if/else分支。考虑如下图表:
Boost.Msm 不能直接支持 if/else 分支。如早些时候所提到,转变表和内部转变表是最低行到最高行逐步评估。这意味着你可以通过状态转变行在转变组中的位置来实现 if/else 分支。在else行的 guard 是 none。如下的状态转变表:
// Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1_, Event1, State1_, Action2, msmf::none >, // else msmf::Row < State1_, Event1, State1_, Action1, Guard1 > > {};首先,考虑下连接点伪状态和选择伪状态的不同。
这两个图表很相似。其唯一的差别在于一个用连接伪状态,另一个用选择伪状态。先来看图1,当 Event1 发生时,根据状态表中顺序选择首先执行哪个分支,且守卫条件的评估应该优先于Event1的动作调用,随后根据守卫条件的评估结果来决定是否调用对应分支的Event1的动作调用与否。若val = 1,则两个分支都的动作根据转换表中的顺序进行先后调用。(注意:与上一节中if/else分支的选择类似在val != 1是方能达到二者选其一的效果。)
然后,来看图2中的选择伪状态。当 Event1 发生时,在 Event1/val=1 的相应动作调用后将评估守卫条件。因此 val==1 分支被选择,随后 Val1Action 被调用。这意味着当此状态转换完成(转换到choice状态)后,相应的转换动作将被一个一个被评估是否进行条用。
接下来,看看选择伪状态在 Boost.Msm 中如何实现。Boost.Msm 不直接支持选择伪状态,但是可以用正常状态替代选择伪状态。替换后如下图表中所描述。
以下是对上述状态转换图表的具体代码实现:
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // Events struct Event1 {}; // ----- State machine struct Sm1_:msmf::state_machine_def<Sm1_> { struct State1_:msmf::state<>{ template <class Event, class Fsm, class SourceState, class TargetState> void operator()(Event const&, Fsm& f, SourceState&, TargetState&) const { f.val = 0; std::cout << "val = " << f.val << std::endl; } }; struct Choice_:msmf::state<>{}; // Set initial state typedef State1_ initial_state; // Guards struct GuardVal1 { template <class Event, class Fsm, class SourceState, class TargetState> bool operator()(Event const&, Fsm& f, SourceState&, TargetState&) const { if (f.val == 1) return true; return false; } }; // Actions struct ActionVal1Assign { template <class Event, class Fsm, class SourceState, class TargetState> void operator()(Event const&, Fsm& f, SourceState&, TargetState&) const { f.val = 1; std::cout << "ActionVal1Assign val = " << f.val << std::endl; } }; struct ActionVal1Branch { template <class Event, class Fsm, class SourceState, class TargetState> void operator()(Event const&, Fsm& f, SourceState&, TargetState&) const { std::cout << "ActionVal1Branch val = " << f.val << std::endl; } }; struct ActionElseBranch { template <class Event, class Fsm, class SourceState, class TargetState> void operator()(Event const&, Fsm& f, SourceState&, TargetState&) const { std::cout << "ActionElseBranch val = " << f.val << std::endl; } }; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1_, Event1, Choice_, ActionVal1Assign, msmf::none >, msmf::Row < Choice_, msmf::none, State1_, ActionElseBranch, msmf::none >, // else msmf::Row < Choice_, msmf::none, State1_, ActionVal1Branch, GuardVal1 > > {}; private: int val; }; // back-end typedef msm::back::state_machine<Sm1_> Sm1; void test() { Sm1 sm1; sm1.start(); std::cout << "> Send Event1" << std::endl; sm1.process_event(Event1()); } } int main() { test(); return 0; } // Output: // // > Send Event1 // ActionVal1Assign val = 1 // ActionVal1Branch val = 1UML 支持延时事件功能。参见如下图表。
在某个状态中有一个defer描述的事件发生时,此事件将被预存。直到转换到一个没有此事件延时描述的状态时,此事件将被掉调用。
例如,在如上图表中,在 State1 发生两次 Event1,都被预存。然后,Event2 发生,由于 state2 存在 event1/defer 描述,故两个 Event1 仍然被缓存。当Event2 再次发生时,状态将按照 state3,state4 和 state5逐步变化。
Boost.Msm 可以直接支持延时事件。为了使用延时事件,需要在状态机定义中插入如下类型定义。 typedef int activate_deferred_events; 然后,放置 msmf::Defer 到状态转换表的 Action 列。作为一个正常的动作,也可为其添加你守卫条件。如果守卫条件存在,则只有在守卫条件满足时事件才会预存。
struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, Event1, msmf::none, msmf::Defer, msmf::none >, msmf::Row < State2, Event1, msmf::none, msmf::Defer, msmf::none >,下面代码时对于图表的具体实现。
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct Event1 {}; struct Event2 {}; // ----- State machine struct Sm1_:msmf::state_machine_def<Sm1_> { // States struct State1:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State1::on_entry()" << std::endl; } }; struct State2:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State2::on_entry()" << std::endl; } }; struct State3:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State3::on_entry()" << std::endl; } }; struct State4:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State4::on_entry()" << std::endl; } }; struct State5:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State5::on_entry()" << std::endl; } }; struct State6:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State6::on_entry()" << std::endl; } }; // Set initial state typedef State1 initial_state; // Enable deferred capability typedef int activate_deferred_events; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, Event1, msmf::none, msmf::Defer, msmf::none >, msmf::Row < State2, Event1, msmf::none, msmf::Defer, msmf::none >, msmf::Row < State1, Event2, State2, msmf::none, msmf::none >, msmf::Row < State2, Event2, State3, msmf::none, msmf::none >, msmf::Row < State3, Event1, State4, msmf::none, msmf::none >, msmf::Row < State4, Event1, State5, msmf::none, msmf::none >, msmf::Row < State5, Event1, State6, msmf::none, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<Sm1_> Sm1; void test() { Sm1 sm1; sm1.start(); std::cout << "> Send Event1" << std::endl; sm1.process_event(Event1()); std::cout << "> Send Event1" << std::endl; sm1.process_event(Event1()); std::cout << "> Send Event2" << std::endl; sm1.process_event(Event2()); std::cout << "> Send Event2" << std::endl; sm1.process_event(Event2()); } } int main() { test(); return 0; } // Output: // // State1::on_entry() // > Send Event1 // > Send Event1 // > Send Event2 // State2::on_entry() // > Send Event2 // State3::on_entry() // State4::on_entry() // State5::on_entry()让我们来看一个更复杂的例子。一个匿名的状态转换比延时事件更高的优先级。考虑如下图表。
当在 State1 发生 Event1时,此事件将被预存。然后 Event2发生,当前状态转变为 state2。state2 有两个将要发生的转换,一个是 Event1,另一个是匿名转变。匿名转变优先被选择。因此,接下来的状态变化为 是 state3 和 state4。
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct Event1 {}; struct Event2 {}; // ----- State machine struct Sm1_:msmf::state_machine_def<Sm1_> { // States struct State1:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State1::on_entry()" << std::endl; } }; struct State2:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State2::on_entry()" << std::endl; } }; struct State3:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State3::on_entry()" << std::endl; } }; struct State4:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State4::on_entry()" << std::endl; } }; struct State5:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State5::on_entry()" << std::endl; } }; // Set initial state typedef State1 initial_state; // Enable deferred capability typedef int activate_deferred_events; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, Event1, msmf::none, msmf::Defer, msmf::none >, msmf::Row < State1, Event2, State2, msmf::none, msmf::none >, msmf::Row < State2, msmf::none, State3, msmf::none, msmf::none >, msmf::Row < State3, Event1, State4, msmf::none, msmf::none >, msmf::Row < State2, Event1, State5, msmf::none, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<Sm1_> Sm1; void test() { Sm1 sm1; sm1.start(); std::cout << "> Send Event1" << std::endl; sm1.process_event(Event1()); std::cout << "> Send Event2" << std::endl; sm1.process_event(Event2()); } } int main() { test(); return 0; } // Output: // // State1::on_entry() // > Send Event1 // > Send Event2 // State2::on_entry() // State3::on_entry() // State4::on_entry()Boost.Msm 支持组合装填和子状态机。参见如下图表,State1 是一个包含两个状态的组合状态。其对应的代码实现如下。 命名规则
在描述代码之前,先介绍一下命名规则,Name_(以下划线结尾的状态名)是一个继承于 state_machine_def 类模板的状态名。 struct State1_:msmf::state_machine_def<State1_> Name(不以下划线结尾的状态名)是一个非继承于此的状态名。 struct State2:msmf::state<> Name 也用于 Boost.Msm 有一个Name_参数的后端模板。 typedef msm:🔙:state_machine<State1_> State1;
让我们看看上面图表的代码实现。
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> #include <boost/static_assert.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct Event1 {}; struct Event2 {}; struct Event3 {}; // ----- State machine struct OuterSm_:msmf::state_machine_def<OuterSm_> { struct State1_:msmf::state_machine_def<State1_> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, OuterSm_>::value)); std::cout << "State1::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, OuterSm_>::value)); std::cout << "State1::on_exit()" << std::endl; } struct SubState1:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, State1_>::value)); std::cout << "SubState1::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, State1_>::value)); std::cout << "SubState1::on_exit()" << std::endl; } }; struct SubState2:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, State1_>::value)); std::cout << "SubState2::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, State1_>::value)); std::cout << "SubState2::on_exit()" << std::endl; } }; // Set initial state typedef mpl::vector<SubState1> initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < SubState1, Event2, SubState2, msmf::none, msmf::none >, msmf::Row < SubState2, Event3, SubState1, msmf::none, msmf::none > > {}; }; struct State2:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, OuterSm_>::value)); std::cout << "State2::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, OuterSm_>::value)); std::cout << "State2::on_exit()" << std::endl; } }; typedef msm::back::state_machine<State1_> State1; // Set initial state typedef State1 initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, Event1, State2, msmf::none, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<OuterSm_> Osm; void test() { Osm osm; osm.start(); std::cout << "> Send Event2()" << std::endl; osm.process_event(Event2()); std::cout << "> Send Event1()" << std::endl; osm.process_event(Event1()); } } int main() { test(); return 0; } // Output: // // State1::on_entry() // SubState1::on_entry() // > Send Event2() // SubState1::on_exit() // SubState2::on_entry() // > Send Event1() // SubState2::on_exit() // State1::on_exit() // State2::on_entry()为了实现组合状态,继承 state_machine_def 类模板按照其父状态机相同的方式。 struct State1_:msmf::state_machine_def<State1_> 然后,连接到后台状态机模板。 typedef msm:🔙:state_machine<State1_> State1; 在父状态机的状态转换表中,可以使用后台状态。
// Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, Event1, State2, msmf::none, msmf::none > > {};下面图表是子状态机的样例,这些图表与上面所讲的组合状态有相同的行为。子状态机的状态相对于组合状态其重用性更好。例如,你能重用StateSub 作为State2的子状态机。
下面是具体代码实现:
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> #include <boost/static_assert.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct Event1 {}; struct Event2 {}; struct Event3 {}; // ----- State machine struct StateSub_:msmf::state_machine_def<StateSub_> { struct SubState1:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, StateSub_>::value)); std::cout << "SubState1::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, StateSub_>::value)); std::cout << "SubState1::on_exit()" << std::endl; } }; struct SubState2:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, StateSub_>::value)); std::cout << "SubState2::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, StateSub_>::value)); std::cout << "SubState2::on_exit()" << std::endl; } }; // Set initial state typedef mpl::vector<SubState1> initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < SubState1, Event2, SubState2, msmf::none, msmf::none >, msmf::Row < SubState2, Event3, SubState1, msmf::none, msmf::none > > {}; }; typedef msm::back::state_machine<StateSub_> StateSub; struct OuterSm_:msmf::state_machine_def<OuterSm_> { struct State1_:msmf::state_machine_def<State1_> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, OuterSm_>::value)); std::cout << "State1::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, OuterSm_>::value)); std::cout << "State1::on_exit()" << std::endl; } struct Sub_:StateSub {}; typedef Sub_ initial_state; }; // Pick a back-end typedef msm::back::state_machine<State1_> State1; struct State2:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, OuterSm_>::value)); std::cout << "State2::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, OuterSm_>::value)); std::cout << "State2::on_exit()" << std::endl; } }; // Set initial state typedef State1 initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, Event1, State2, msmf::none, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<OuterSm_> Osm; void test() { Osm osm; osm.start(); std::cout << "> Send Event2()" << std::endl; osm.process_event(Event2()); std::cout << "> Send Event1()" << std::endl; osm.process_event(Event1()); } } int main() { test(); return 0; } // Output: // // State1::on_entry() // SubState1::on_entry() // > Send Event2() // SubState1::on_exit() // SubState2::on_entry() // > Send Event1() // SubState2::on_exit() // State1::on_exit() // State2::on_entry()在 State1_的定义中,内嵌 Sub_ 通过继承 StateSub 的方式定义,并将其设置为子状态机的初始状态。
struct State1_:msmf::state_machine_def<State1_> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, OuterSm_>::value)); std::cout << "State1::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { BOOST_STATIC_ASSERT((boost::is_convertible<Fsm, OuterSm_>::value)); std::cout << "State1::on_exit()" << std::endl; } struct Sub_:StateSub {}; typedef Sub_ initial_state; };在子状态中哪个状态机是可用的?
事件句柄能够获取包含其状态的最内层的状态机。代码中 BOOST_STATIC_ASSERT 检查语句。但是请注意,此处 State1_::on_entry(Event const&, Fsm&) 的引用是 OuterSm_,而不是 State1_,因为 State1_ 包含在 OuterSm_ 内。
有时我们想要从子状态机中退出。Boost.Msm 支持进入和退出伪状态,但是子状态机不支持结束状态。可以通过下面图表代替子状态机结束状态。
在以下图表中则使用退出伪状态。
让我们看看以上图表实现得相应代码。
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct Event1 {}; // ----- State machine struct OuterSm_:msmf::state_machine_def<OuterSm_> { struct State1_:msmf::state_machine_def<State1_> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State1::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { std::cout << "State1::on_exit()" << std::endl; } struct SubState1:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "SubState1::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { std::cout << "SubState1::on_exit()" << std::endl; } }; struct Exit1:msmf::exit_pseudo_state<msmf::none> {}; // Set initial state typedef mpl::vector<SubState1> initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < SubState1, Event1, Exit1, msmf::none, msmf::none > > {}; }; struct State2:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State2::on_entry()" << std::endl; } template <class Event,class Fsm> void on_exit(Event const&, Fsm&) const { std::cout << "State2::on_exit()" << std::endl; } }; typedef msm::back::state_machine<State1_> State1; // Set initial state typedef State1 initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1::exit_pt <State1_::Exit1>, msmf::none, State2, msmf::none, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<OuterSm_> Osm; void test() { Osm osm; osm.start(); std::cout << "> Send Event1()" << std::endl; osm.process_event(Event1()); } } int main() { test(); return 0; } // Output: // // State1::on_entry() // SubState1::on_entry() // > Send Event1() // SubState1::on_exit() // State1::on_exit() // State2::on_entry()为了实现退出点伪状态。定义一个继承于 exit_pseudo_state 的类。 struct Exit1:msmf::exit_pseudo_statemsmf::none {}; 在这个子状态机中,你可以像正常状态一样去使用它。
// Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < SubState1, Event1, Exit1, msmf::none, msmf::none > > {};在父状态机中,你可以按照如下方式表示子状态机的退出伪状态。 SBEN::exit_ptSFEN::SEPN SBEN 表示 Sub-machine’s back-end name SFEN 表示 Sub-machine’s front-end name SEPN 表示 Sub-machine’s exit point pseudo state name。 退出伪状态的事件转换
我们经常想知道子状态机的退出状态。按照 UML 的规范,为了实现此目标,我们将退出点伪状态分离开来。 例如: ExitSuccess 和 ExitFailure
Boost.Msm 提供更灵活的方法。exit_pseudo_state 类模板有一个模板参数。这是一个转换的事件。父状态机可以获取此事件。参见如下图表:
事件 Before 被转换为事件 After,并且父状态机能够获取事件 After。这意味着从子状态机传递任何信息到父状态机。当然事件 Before 必须是可转换为 After。典型地,我们准备为 After 类添加一个转换构造函数。 下面是上面图表相应的代码实现;
#include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct Before { Before(int param_):param(param_) {} int param; }; struct After { After(Before const& b):param(b.param) {} int param; }; // ----- State machine struct OuterSm_:msmf::state_machine_def<OuterSm_> { struct State1_:msmf::state_machine_def<State1_> { struct SubState1:msmf::state<> {}; struct Exit1:msmf::exit_pseudo_state<After> {}; // Set initial state typedef mpl::vector<SubState1> initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < SubState1, Before, Exit1, msmf::none, msmf::none > > {}; }; struct State2:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const& e, Fsm&) const { std::cout << "State2::on_entry()" << std::endl; std::cout << "Event param = " << e.param << std::endl; } }; typedef msm::back::state_machine<State1_> State1; // Set initial state typedef State1 initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1::exit_pt <State1_::Exit1>, After, State2, msmf::none, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<OuterSm_> Osm; void test() { Osm osm; osm.start(); std::cout << "> Send Before(42)" << std::endl; osm.process_event(Before(42)); } } int main() { test(); return 0; } // Output: // // > Send Before(42) // State2::on_entry() // Event param = 42有三种方法实现 UML 的进入点伪状态:
使用 msm::front::entry_pseudo_state, msm::front::entry_pt 和boost::any。
使用 msm::front::entry_pseudo_state, msm::front::entry_pt 和 outer event.
使用 msm::front::explicit_entry, msm::front::direct 和 none.
我推荐第 1 种方法,因为此方法直接能够将此模型映射到代码。Boost.Msm 从1.51.0 开始支持 boost::any 作为事件使用。如果你使用此版本或更新的版本,则最好使用方法1。否则,你就需要根据以下原则来选择方法 2 或方法 3: 如果子状态机想要知道进入点伪状态的触发事件,选择方法 2。 否则选择方法 3。方法 2 中的引入了子状态机对于父状态机的依赖,而方法3则不存在此依赖。 以下是相关的代码详细实现
使用 msm::front::entry_pseudo_state, msm::front::entry_pt 和boost::any。 #include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct OuterEvent {}; struct Event1 {}; // ----- State machine struct OuterSm_:msmf::state_machine_def<OuterSm_> { struct State1:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State1::on_entry()" << std::endl; } }; struct State2_:msmf::state_machine_def<State2_> { struct SubState1:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "SubState1::on_entry()" << std::endl; } }; struct SubState2:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "SubState2::on_entry()" << std::endl; } }; struct Entry1:msmf::entry_pseudo_state<> {}; // === entry_pseudo_state struct Exit1:msmf::exit_pseudo_state<msmf::none> {}; // Set initial state typedef mpl::vector<SubState1> initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < Entry1, boost::any, SubState2, msmf::none, msmf::none >, // === boost::any msmf::Row < SubState1, Event1, Exit1, msmf::none, msmf::none >, msmf::Row < SubState2, Event1, Exit1, msmf::none, msmf::none > > {}; }; typedef msm::back::state_machine<State2_> State2; // Set initial state typedef State1 initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, OuterEvent, State2::entry_pt // === entry_pt <State2_::Entry1>, msmf::none, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<OuterSm_> Osm; void test() { Osm osm; osm.start(); std::cout << "> Send OuterEvent()" << std::endl; osm.process_event(OuterEvent()); } } int main() { test(); return 0; } 使用 msm::front::entry_pseudo_state, msm::front::entry_pt 和 outer event. #include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct OuterEvent {}; struct Event1 {}; // ----- State machine struct OuterSm_:msmf::state_machine_def<OuterSm_> { struct State1:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State1::on_entry()" << std::endl; } }; struct State2_:msmf::state_machine_def<State2_> { struct SubState1:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "SubState1::on_entry()" << std::endl; } }; struct SubState2:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "SubState2::on_entry()" << std::endl; } }; struct Entry1:msmf::entry_pseudo_state<> {}; // === entry_pseudo_state struct Exit1:msmf::exit_pseudo_state<msmf::none> {}; // Set initial state typedef mpl::vector<SubState1> initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < Entry1, OuterEvent, SubState2, msmf::none, msmf::none >, // === OuterEvent msmf::Row < SubState1, Event1, Exit1, msmf::none, msmf::none >, msmf::Row < SubState2, Event1, Exit1, msmf::none, msmf::none > > {}; }; typedef msm::back::state_machine<State2_> State2; // Set initial state typedef State1 initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, OuterEvent, State2::entry_pt // === entry_pt <State2_::Entry1>, msmf::none, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<OuterSm_> Osm; void test() { Osm osm; osm.start(); std::cout << "> Send OuterEvent()" << std::endl; osm.process_event(OuterEvent()); } } int main() { test(); return 0; }Entry1 的进入事件必须可转变为 Entry1 的出口事件,在以下样例中,进入事件和出口事件都是 Outer Event。
// Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, OuterEvent, State2::entry_pt // === entry_pt <State2_::Entry1>, msmf::none, msmf::none > > {}; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < Entry1, OuterEvent, SubState2, msmf::none, msmf::none >, // === OuterEvent msmf::Row < SubState1, Event1, Exit1, msmf::none, msmf::none >, msmf::Row < SubState2, Event1, Exit1, msmf::none, msmf::none > > {};请注意一个重要例外情况。任何事件都能够转换为msm::front::none,因此,msm::front::none 不能够用作 Entry1 的出口事件,如此能够通过编译,但是可能发生非预期行为。
使用 msm::front::explicit_entry, msm::front::direct 和 none. #include <iostream> #include <boost/msm/back/state_machine.hpp> #include <boost/msm/front/state_machine_def.hpp> #include <boost/msm/front/functor_row.hpp> namespace { namespace msm = boost::msm; namespace msmf = boost::msm::front; namespace mpl = boost::mpl; // ----- Events struct OuterEvent {}; struct Event1 {}; // ----- State machine struct OuterSm_:msmf::state_machine_def<OuterSm_> { struct State1:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "State1::on_entry()" << std::endl; } }; struct State2_:msmf::state_machine_def<State2_> { struct SubState1:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "SubState1::on_entry()" << std::endl; } }; struct SubState2:msmf::state<> { template <class Event,class Fsm> void on_entry(Event const&, Fsm&) const { std::cout << "SubState2::on_entry()" << std::endl; } }; struct Entry1:msmf::state<>, msmf::explicit_entry<> {}; // === explicit_entry struct Exit1:msmf::exit_pseudo_state<msmf::none> {}; // Set initial state typedef mpl::vector<SubState1> initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < Entry1, msmf::none, SubState2, msmf::none, msmf::none >, // === none msmf::Row < SubState1, Event1, Exit1, msmf::none, msmf::none >, msmf::Row < SubState2, Event1, Exit1, msmf::none, msmf::none > > {}; }; typedef msm::back::state_machine<State2_> State2; // Set initial state typedef State1 initial_state; // Transition table struct transition_table:mpl::vector< // Start Event Next Action Guard msmf::Row < State1, OuterEvent, State2::direct // === direct <State2_::Entry1>, msmf::none, msmf::none > > {}; }; // Pick a back-end typedef msm::back::state_machine<OuterSm_> Osm; void test() { Osm osm; osm.start(); std::cout << "> Send OuterEvent()" << std::endl; osm.process_event(OuterEvent()); } } int main() { test(); return 0; }你可能在想为什么 用 mpl::vector来定义初始状态init_state。如下代码行与mpl::vector元素为 1 时,所代表的含义一样。 typedef SubState1 initial_state;
版权声明:自由转载-非商用-非衍生-保持署名(创意共享3.0许可证)作者:守拙圆 链接:https://www.jianshu.com/p/6748aa7c117b 来源:简书 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。