PyTorch框架学习十七——Batch Normalization

tech2022-09-13  130

PyTorch框架学习十七——Batch Normalization

一、BN的概念二、Internal Covariate Shift(ICS)三、BN的一个应用案例四、PyTorch中BN的实现1._BatchNorm类2.nn.BatchNorm1d/2d/3d(1)nn.BatchNorm1d(2)nn.BatchNorm2d(3)nn.BatchNorm3d

本次笔记关注深度学习中非常常用的标准化方法:BN。

BN首次于论文《Batch Normalization:Accelerating Deep Network Training by Reducing Internel Covariate》中提出,本来是想要解决训练过程中随着网络层数的加深而导致的数据尺度/分布变化的问题,但是同时还发现了很多其他非常有用的优点,因此自从提出以来就受到了广泛的应用。相应的,LN、IN和GN在基于BN的思想上纷纷被提出,适用于各自不同的场景。

一、BN的概念

Batch Normalization:批归一化,批指的是一小批数据,通常为mini-batch,标准化指的是要将数据标准化为0均值、1方差。

建议看BN的论文,这里提炼一下BN使用的优点:

可用更大的lr,加速模型收敛。可不用精心设计权值初始化,这一点很实用(其实是很省事)可不用Dropout或用较小的Dropout可不用L2或用较小的weight decay可不用LRN(local response normalization)以及BN提出的本意,解决了随着网络层数的加深而导致的数据尺度/分布变化的问题

下面给出了BN的算法过程: 输入是一小批的数据以及要学习的参数γ和β,首先求这一小批数据的均值和方差,然后使用这个均值和方差进行标准化数据,这样得到的数据就服从0均值1标准差。但到这里还没有结束,BN还多了一个仿射变换的步骤,即将标准化后的数据缩放并平移,但是这个是一个可学习的过程,参数γ和β是在训练过程中不断被学习的,如果模型觉得需要,就可以进行仿射变换,这一步的作用是可以增加模型的容量,使得模型更加灵活,选择性更多。

二、Internal Covariate Shift(ICS)

这个就是BN论文本来要解决的问题,训练过程中随着网络层数的增加,数据的分布会随之变化,下面举了一个例子,具体如下图所示: 这是一个全连接网络,第一层为输入层X,第一个全连接层的权值为W1,则第一个全连接层的输出H1等于X和W1向量相乘,假设输入X满足0均值1标准差,即标准化后的结果。

若W初始化时也是1标准差,那么H1的方差的结果如上图计算得为n,即经过一层全连接层,数据的分布范围就扩大了n倍,那么经过多层,数据的分布将会越来越大,这样反向求梯度的时候也会非常大,也就是梯度爆炸现象。

再试想一下,如果初始化的时候W的方差很小,小于1/n,那么H1的方差的结果将会小于1,那么经过多层,数据的分布将会越来越小,这样反向求梯度的时候也会非常小,也就是梯度消失现象。

以上所述的就是ICS,而BN所做的就是在每一层全连接层后面将数据分布变化的数据再标准化回0均值1标准差,以此来消除对后续网络层的影响,从而消除了ICS。

下面将构造一个100层,每层256个神经元的全连接网络,观察其数据分布随网络层数的变化:

import torch import numpy as np import torch.nn as nn import sys, os from tools.common_tools import set_seed set_seed(1) # 设置随机种子 class MLP(nn.Module): def __init__(self, neural_num, layers=100): super(MLP, self).__init__() self.linears = nn.ModuleList([nn.Linear(neural_num, neural_num, bias=False) for i in range(layers)]) self.bns = nn.ModuleList([nn.BatchNorm1d(neural_num) for i in range(layers)]) self.neural_num = neural_num def forward(self, x): for (i, linear), bn in zip(enumerate(self.linears), self.bns): x = linear(x) # method 3 # x = bn(x) x = torch.relu(x) if torch.isnan(x.std()): print("output is nan in {} layers".format(i)) break print("layers:{}, std:{}".format(i, x.std().item())) return x def initialize(self): for m in self.modules(): if isinstance(m, nn.Linear): # method 1 nn.init.normal_(m.weight.data, std=1) # normal: mean=0, std=1 # method 2 kaiming # nn.init.kaiming_normal_(m.weight.data) neural_nums = 256 layer_nums = 100 batch_size = 16 net = MLP(neural_nums, layer_nums) net.initialize() inputs = torch.randn((batch_size, neural_nums)) # normal: mean=0, std=1 output = net(inputs) print(output)

代码中有3种情况:

第一个是使用正态分布给权值初始化,使得权值0均值1标准差,且没有使用BN层,将每一层网络的数据标准差打印出来如下所示: layers:0, std:9.352246284484863 layers:1, std:112.47123718261719 layers:2, std:1322.8056640625 layers:3, std:14569.42578125 layers:4, std:154672.765625 layers:5, std:1834038.125 layers:6, std:18807982.0 layers:7, std:209553056.0 layers:8, std:2637502976.0 layers:9, std:32415457280.0 layers:10, std:374825549824.0 layers:11, std:3912853094400.0 layers:12, std:41235926482944.0 layers:13, std:479620541448192.0 layers:14, std:5320927071961088.0 layers:15, std:5.781225696395264e+16 layers:16, std:7.022147146707108e+17 layers:17, std:6.994718592201654e+18 layers:18, std:8.473501588274335e+19 layers:19, std:9.339794309346954e+20 layers:20, std:9.56936220412742e+21 layers:21, std:1.176274650258599e+23 layers:22, std:1.482641634599281e+24 layers:23, std:1.6921343606923352e+25 layers:24, std:1.9741450942615745e+26 layers:25, std:2.1257213262324592e+27 layers:26, std:2.191710730990783e+28 layers:27, std:2.5254503817521246e+29 layers:28, std:3.221308876879874e+30 layers:29, std:3.530952437322462e+31 layers:30, std:4.525353644890983e+32 layers:31, std:4.715011552268428e+33 layers:32, std:5.369590669553154e+34 layers:33, std:6.712318470791119e+35 layers:34, std:7.451114589527308e+36 output is nan in 35 layers tensor([[3.2626e+36, 0.0000e+00, 7.2932e+37, ..., 0.0000e+00, 0.0000e+00, 2.5465e+38], [3.9237e+36, 0.0000e+00, 7.5033e+37, ..., 0.0000e+00, 0.0000e+00, 2.1274e+38], [0.0000e+00, 0.0000e+00, 4.4932e+37, ..., 0.0000e+00, 0.0000e+00, 1.7016e+38], ..., [0.0000e+00, 0.0000e+00, 2.4222e+37, ..., 0.0000e+00, 0.0000e+00, 2.5295e+38], [4.7380e+37, 0.0000e+00, 2.1580e+37, ..., 0.0000e+00, 0.0000e+00, 2.6028e+38], [0.0000e+00, 0.0000e+00, 6.0878e+37, ..., 0.0000e+00, 0.0000e+00, 2.1695e+38]], grad_fn=<ReluBackward0>)

正如上面分析的一样,数据变得越来越大。

第二种情况是找到一种合适的初始化方法,使得其没有ICS,这里使用了kaiming_normal初始化,结果如下: layers:0, std:0.8266295790672302 layers:1, std:0.8786815404891968 layers:2, std:0.9134421944618225 layers:3, std:0.8892470598220825 layers:4, std:0.8344280123710632 layers:5, std:0.874537467956543 layers:6, std:0.7926970720291138 layers:7, std:0.7806458473205566 layers:8, std:0.8684563636779785 layers:9, std:0.9434137344360352 layers:10, std:0.964215874671936 layers:11, std:0.8896796107292175 layers:12, std:0.8287257552146912 layers:13, std:0.8519770503044128 layers:14, std:0.83543461561203 layers:15, std:0.802306056022644 layers:16, std:0.8613607287406921 layers:17, std:0.7583686709403992 layers:18, std:0.8120225071907043 layers:19, std:0.791111171245575 layers:20, std:0.7164373397827148 layers:21, std:0.778393030166626 layers:22, std:0.8672043085098267 layers:23, std:0.8748127222061157 layers:24, std:0.9020991921424866 layers:25, std:0.8585717082023621 layers:26, std:0.7824354767799377 layers:27, std:0.7968913912773132 layers:28, std:0.8984370231628418 layers:29, std:0.8704466819763184 layers:30, std:0.9860475063323975 layers:31, std:0.9080778360366821 layers:32, std:0.9140638113021851 layers:33, std:1.0099570751190186 layers:34, std:0.9909381866455078 layers:35, std:1.0253210067749023 layers:36, std:0.8490436673164368 layers:37, std:0.703953742980957 layers:38, std:0.7186156511306763 layers:39, std:0.7250635623931885 layers:40, std:0.7030817866325378 layers:41, std:0.6325559616088867 layers:42, std:0.6623691916465759 layers:43, std:0.6960877180099487 layers:44, std:0.7140734195709229 layers:45, std:0.6329052448272705 layers:46, std:0.645889937877655 layers:47, std:0.7354376912117004 layers:48, std:0.6710689067840576 layers:49, std:0.6939154863357544 layers:50, std:0.6889259219169617 layers:51, std:0.6331775188446045 layers:52, std:0.6029314398765564 layers:53, std:0.6145529747009277 layers:54, std:0.6636687517166138 layers:55, std:0.7440096139907837 layers:56, std:0.7972176671028137 layers:57, std:0.7606151103973389 layers:58, std:0.6968684196472168 layers:59, std:0.7306802868843079 layers:60, std:0.6875628232955933 layers:61, std:0.7171440720558167 layers:62, std:0.7646605968475342 layers:63, std:0.7965087294578552 layers:64, std:0.8833741545677185 layers:65, std:0.8592953681945801 layers:66, std:0.8092937469482422 layers:67, std:0.8064812421798706 layers:68, std:0.6792411208152771 layers:69, std:0.6583347320556641 layers:70, std:0.5702279210090637 layers:71, std:0.5084437727928162 layers:72, std:0.4869327247142792 layers:73, std:0.4635041356086731 layers:74, std:0.4796812832355499 layers:75, std:0.4737212061882019 layers:76, std:0.4541455805301666 layers:77, std:0.4971913695335388 layers:78, std:0.49279505014419556 layers:79, std:0.44223514199256897 layers:80, std:0.4802999496459961 layers:81, std:0.5579249858856201 layers:82, std:0.5283756852149963 layers:83, std:0.5451982617378235 layers:84, std:0.6203728318214417 layers:85, std:0.6571894884109497 layers:86, std:0.7036821842193604 layers:87, std:0.7321069836616516 layers:88, std:0.6924358606338501 layers:89, std:0.6652534604072571 layers:90, std:0.6728310585021973 layers:91, std:0.6606624126434326 layers:92, std:0.6094606518745422 layers:93, std:0.6019104719161987 layers:94, std:0.5954217314720154 layers:95, std:0.6624558568000793 layers:96, std:0.6377887725830078 layers:97, std:0.6079288125038147 layers:98, std:0.6579317450523376 layers:99, std:0.6668478846549988 tensor([[0.0000, 1.3437, 0.0000, ..., 0.0000, 0.6444, 1.1867], [0.0000, 0.9757, 0.0000, ..., 0.0000, 0.4645, 0.8594], [0.0000, 1.0023, 0.0000, ..., 0.0000, 0.5148, 0.9196], ..., [0.0000, 1.2873, 0.0000, ..., 0.0000, 0.6454, 1.1411], [0.0000, 1.3589, 0.0000, ..., 0.0000, 0.6749, 1.2438], [0.0000, 1.1807, 0.0000, ..., 0.0000, 0.5668, 1.0600]], grad_fn=<ReluBackward0>)

数据的确没有随着网络层加深而快速增大或减小,但是寻找到一种合适的初始化方法往往很花费时间。

第三种情况是加入BN层,不使用初始化: layers:0, std:0.5751240849494934 layers:1, std:0.5803307890892029 layers:2, std:0.5825020670890808 layers:3, std:0.5823132395744324 layers:4, std:0.5860626101493835 layers:5, std:0.579832911491394 layers:6, std:0.5815905332565308 layers:7, std:0.5734466910362244 layers:8, std:0.5853903293609619 layers:9, std:0.5811620950698853 layers:10, std:0.5818504095077515 layers:11, std:0.5775734186172485 layers:12, std:0.5788553357124329 layers:13, std:0.5831498503684998 layers:14, std:0.5726235508918762 layers:15, std:0.5717664957046509 layers:16, std:0.576700747013092 layers:17, std:0.5848639607429504 layers:18, std:0.5718148350715637 layers:19, std:0.5775086879730225 layers:20, std:0.5790560841560364 layers:21, std:0.5815289616584778 layers:22, std:0.5845211744308472 layers:23, std:0.5830678343772888 layers:24, std:0.5817515850067139 layers:25, std:0.5793628096580505 layers:26, std:0.5744576454162598 layers:27, std:0.581753134727478 layers:28, std:0.5858433246612549 layers:29, std:0.5895737409591675 layers:30, std:0.5806193351745605 layers:31, std:0.5742025971412659 layers:32, std:0.5814924240112305 layers:33, std:0.5800969004631042 layers:34, std:0.5751299858093262 layers:35, std:0.5819362998008728 layers:36, std:0.57569420337677 layers:37, std:0.5824175477027893 layers:38, std:0.5741908550262451 layers:39, std:0.5768386721611023 layers:40, std:0.578640341758728 layers:41, std:0.5833579301834106 layers:42, std:0.5873513221740723 layers:43, std:0.5807022452354431 layers:44, std:0.5743744373321533 layers:45, std:0.5791332721710205 layers:46, std:0.5789337158203125 layers:47, std:0.5805914402008057 layers:48, std:0.5796007513999939 layers:49, std:0.5833531022071838 layers:50, std:0.5896912813186646 layers:51, std:0.5851364731788635 layers:52, std:0.5816906094551086 layers:53, std:0.5805508494377136 layers:54, std:0.5876169204711914 layers:55, std:0.576688826084137 layers:56, std:0.5784814357757568 layers:57, std:0.5820549726486206 layers:58, std:0.5837342739105225 layers:59, std:0.5691872835159302 layers:60, std:0.5777156949043274 layers:61, std:0.5763663649559021 layers:62, std:0.5843147039413452 layers:63, std:0.5852570533752441 layers:64, std:0.5836994051933289 layers:65, std:0.5794276595115662 layers:66, std:0.590632438659668 layers:67, std:0.5765355825424194 layers:68, std:0.5794717073440552 layers:69, std:0.5696660876274109 layers:70, std:0.5910594463348389 layers:71, std:0.5822493433952332 layers:72, std:0.5893915295600891 layers:73, std:0.5875967741012573 layers:74, std:0.5845006108283997 layers:75, std:0.573967695236206 layers:76, std:0.5823272466659546 layers:77, std:0.5769740343093872 layers:78, std:0.5787169933319092 layers:79, std:0.5757712721824646 layers:80, std:0.5799717307090759 layers:81, std:0.577584981918335 layers:82, std:0.581005334854126 layers:83, std:0.5819255113601685 layers:84, std:0.577966570854187 layers:85, std:0.5941665172576904 layers:86, std:0.5822250247001648 layers:87, std:0.5828983187675476 layers:88, std:0.5758668184280396 layers:89, std:0.5786070823669434 layers:90, std:0.5724494457244873 layers:91, std:0.5775058269500732 layers:92, std:0.5749661326408386 layers:93, std:0.5795350670814514 layers:94, std:0.5690663456916809 layers:95, std:0.5838885307312012 layers:96, std:0.578350305557251 layers:97, std:0.5750819444656372 layers:98, std:0.5843801498413086 layers:99, std:0.5825926065444946 tensor([[1.0858, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.7552], [0.0000, 0.0000, 0.3216, ..., 0.0000, 0.0000, 0.1931], [0.0000, 0.5979, 0.1423, ..., 1.2776, 0.9048, 0.0000], ..., [0.8705, 0.4248, 0.0000, ..., 0.0000, 0.8963, 0.3446], [0.0000, 0.0000, 0.0000, ..., 0.5631, 0.0000, 0.4281], [1.1301, 0.0000, 0.0000, ..., 2.2642, 0.3234, 0.0000]], grad_fn=<ReluBackward0>)

可以看得出来效果比使用kaiming_normal初始化更好,这个例子说明BN层的使用可以不用初始化而且避免了ICS的问题。

三、BN的一个应用案例

用LeNet解决一个人民币二分类的问题:

import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.transforms as transforms from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader from matplotlib import pyplot as plt import sys hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__)+os.path.sep+".."+os.path.sep+"..") sys.path.append(hello_pytorch_DIR) from model.lenet import LeNet, LeNet_bn from tools.my_dataset import RMBDataset from tools.common_tools import set_seed class LeNet_bn(nn.Module): def __init__(self, classes): super(LeNet_bn, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.bn1 = nn.BatchNorm2d(num_features=6) self.conv2 = nn.Conv2d(6, 16, 5) self.bn2 = nn.BatchNorm2d(num_features=16) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.bn3 = nn.BatchNorm1d(num_features=120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, classes) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = F.relu(out) out = F.max_pool2d(out, 2) out = self.conv2(out) out = self.bn2(out) out = F.relu(out) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = self.fc1(out) out = self.bn3(out) out = F.relu(out) out = F.relu(self.fc2(out)) out = self.fc3(out) return out def initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.xavier_normal_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): nn.init.normal_(m.weight.data, 0, 1) m.bias.data.zero_() set_seed(1) # 设置随机种子 rmb_label = {"1": 0, "100": 1} # 参数设置 MAX_EPOCH = 10 BATCH_SIZE = 16 LR = 0.01 log_interval = 10 val_interval = 1 # ============================ step 1/5 数据 ============================ BASE_DIR = os.path.dirname(os.path.abspath(__file__)) split_dir = os.path.abspath(os.path.join(BASE_DIR, "..", "..", "data", "rmb_split")) train_dir = os.path.join(split_dir, "train") valid_dir = os.path.join(split_dir, "valid") if not os.path.exists(split_dir): raise Exception(r"数据 {} 不存在, 回到lesson-06\1_split_dataset.py生成数据".format(split_dir)) norm_mean = [0.485, 0.456, 0.406] norm_std = [0.229, 0.224, 0.225] train_transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.RandomCrop(32, padding=4), transforms.RandomGrayscale(p=0.8), transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std), ]) valid_transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std), ]) # 构建MyDataset实例 train_data = RMBDataset(data_dir=train_dir, transform=train_transform) valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform) # 构建DataLoder train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE) # ============================ step 2/5 模型 ============================ # net = LeNet_bn(classes=2) net = LeNet(classes=2) # net.initialize_weights() # ============================ step 3/5 损失函数 ============================ criterion = nn.CrossEntropyLoss() # 选择损失函数 # ============================ step 4/5 优化器 ============================ optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9) # 选择优化器 scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) # 设置学习率下降策略 # ============================ step 5/5 训练 ============================ train_curve = list() valid_curve = list() iter_count = 0 # 构建 SummaryWriter writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix") for epoch in range(MAX_EPOCH): loss_mean = 0. correct = 0. total = 0. net.train() for i, data in enumerate(train_loader): iter_count += 1 # forward inputs, labels = data outputs = net(inputs) # backward optimizer.zero_grad() loss = criterion(outputs, labels) loss.backward() # update weights optimizer.step() # 统计分类情况 _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).squeeze().sum().numpy() # 打印训练信息 loss_mean += loss.item() train_curve.append(loss.item()) if (i+1) % log_interval == 0: loss_mean = loss_mean / log_interval print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format( epoch, MAX_EPOCH, i+1, len(train_loader), loss_mean, correct / total)) loss_mean = 0. # 记录数据,保存于event file writer.add_scalars("Loss", {"Train": loss.item()}, iter_count) writer.add_scalars("Accuracy", {"Train": correct / total}, iter_count) scheduler.step() # 更新学习率 # validate the model if (epoch+1) % val_interval == 0: correct_val = 0. total_val = 0. loss_val = 0. net.eval() with torch.no_grad(): for j, data in enumerate(valid_loader): inputs, labels = data outputs = net(inputs) loss = criterion(outputs, labels) _, predicted = torch.max(outputs.data, 1) total_val += labels.size(0) correct_val += (predicted == labels).squeeze().sum().numpy() loss_val += loss.item() valid_curve.append(loss.item()) print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format( epoch, MAX_EPOCH, j+1, len(valid_loader), loss_val, correct / total)) # 记录数据,保存于event file writer.add_scalars("Loss", {"Valid": loss.item()}, iter_count) writer.add_scalars("Accuracy", {"Valid": correct / total}, iter_count) train_x = range(len(train_curve)) train_y = train_curve train_iters = len(train_loader) valid_x = np.arange(1, len(valid_curve)+1) * train_iters*val_interval # 由于valid中记录的是epochloss,需要对记录点进行转换到iterations valid_y = valid_curve plt.plot(train_x, train_y, label='Train') plt.plot(valid_x, valid_y, label='Valid') plt.legend(loc='upper right') plt.ylabel('loss value') plt.xlabel('Iteration') plt.show()

首先看一下不使用BN层不使用初始化只用了LeNet的结果: 后期数据出现不理想的情况会使得训练损失发生较大震荡。

再看一下加上初始化后的结果: 后期不再震荡,但是前期也不是很理想。

最后看使用加了BN层的LeNet的结果: 相对来说,这是比较理想的损失函数曲线,尽管有震荡,但是幅度很小。

四、PyTorch中BN的实现

1._BatchNorm类

class _BatchNorm(_NormBase): def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True): super(_BatchNorm, self).__init__( num_features, eps, momentum, affine, track_running_stats) def forward(self, input): self._check_input_dim(input) # exponential_average_factor is set to self.momentum # (when it is available) only so that it gets updated # in ONNX graph when this node is exported to ONNX. if self.momentum is None: exponential_average_factor = 0.0 else: exponential_average_factor = self.momentum if self.training and self.track_running_stats: # TODO: if statement only here to tell the jit to skip emitting this when it is None if self.num_batches_tracked is not None: self.num_batches_tracked = self.num_batches_tracked + 1 if self.momentum is None: # use cumulative moving average exponential_average_factor = 1.0 / float(self.num_batches_tracked) else: # use exponential moving average exponential_average_factor = self.momentum return F.batch_norm( input, self.running_mean, self.running_var, self.weight, self.bias, self.training or not self.track_running_stats, exponential_average_factor, self.eps)

这是BN层需要继承的基类,从init函数可以看出主要参数如下:

num_features:一个样本的特征数量。eps:分母修正项,防止标准化时除以一个为0的方差使得出错。momentum:指数加权平均估计当前mean/var。affine:是否需要affine transform。track_running_stats:是否为训练状态,因为训练模式的mean/var是基于当前数据指数加权平均计算得到的,每个batch都不一样,而测试模式时的mean/var是统计得到,是固定的,不随batch而变化。

此外,从forward函数中可以看到实现标准化和仿射变换操作的,是最后的return,它调用了PyTorch的functional功能,在这个调用里主要属性有:

running_mean:均值。running_var:方差。weight:仿射变换中的gamma。bias:仿射变换中的beta。

对应下面这个公式里的四个参数: 训练时均值和方差是采用指数加权平均计算得到的,公式如下所示: 其中,pre_running_mean是上一个batch计算得到的均值,mean_t是当前batch下求取的均值,最终的均值是这样的一个指数加权平均的形式,方差也是同理。

2.nn.BatchNorm1d/2d/3d

(1)nn.BatchNorm1d

与其他网络层类似,BN层也有三种维度,以一维的为例:

torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

参数都是基类_BatchNorm的参数。

上面介绍了标准化的计算公式,但是BN并不是简单的将这一个batch的数据全部放在一起求均值和方差,而是一种逐特征(在特征这个维度上)的计算方式,一维数据如下图所示: 每一列代表一个数据样本,一共有三个,每个数据样本有5个特征(类似RGB模式),每个特征下就是一个特征的维度,在一维的情况下就是(1),所以数据维度是一个3×5×1的形式,而BN所做的是将三个样本的第一个特征进行标准化和仿射变换,即三个1这行计算均值和方差,同理,另外四行都是如此,因为是对每个特征进行单独的计算均值和方差,所以称为逐特征的计算方式。

下面给出PyTorch的实现代码:

import torch import numpy as np import torch.nn as nn import sys, os from tools.common_tools import set_seed set_seed(1) # 设置随机种子 # ======================================== nn.BatchNorm1d flag = 1 # flag = 0 if flag: batch_size = 3 num_features = 5 momentum = 0.3 features_shape = (1) # 下面三行就是手动构建一个B×C×features_shape :3×5×1 的上述数据 feature_map = torch.ones(features_shape) # 1D feature_maps = torch.stack([feature_map*(i+1) for i in range(num_features)], dim=0) # 2D feature_maps_bs = torch.stack([feature_maps for i in range(batch_size)], dim=0) # 3D print("input data:\n{} shape is {}".format(feature_maps_bs, feature_maps_bs.shape)) bn = nn.BatchNorm1d(num_features=num_features, momentum=momentum) running_mean, running_var = 0, 1 for i in range(2): outputs = bn(feature_maps_bs) print("\niteration:{}, running mean: {} ".format(i, bn.running_mean)) print("iteration:{}, running var:{} ".format(i, bn.running_var)) # 以下是手动计算的验证过程 mean_t, var_t = 2, 0 running_mean = (1 - momentum) * running_mean + momentum * mean_t running_var = (1 - momentum) * running_var + momentum * var_t print("iteration:{}, 第二个特征的running mean: {} ".format(i, running_mean)) print("iteration:{}, 第二个特征的running var:{}".format(i, running_var))

结果如下:

input data: tensor([[[1.], [2.], [3.], [4.], [5.]], [[1.], [2.], [3.], [4.], [5.]], [[1.], [2.], [3.], [4.], [5.]]]) shape is torch.Size([3, 5, 1]) iteration:0, running mean: tensor([0.3000, 0.6000, 0.9000, 1.2000, 1.5000]) iteration:0, running var:tensor([0.7000, 0.7000, 0.7000, 0.7000, 0.7000]) iteration:0, 第二个特征的running mean: 0.6 iteration:0, 第二个特征的running var:0.7 iteration:1, running mean: tensor([0.5100, 1.0200, 1.5300, 2.0400, 2.5500]) iteration:1, running var:tensor([0.4900, 0.4900, 0.4900, 0.4900, 0.4900]) iteration:1, 第二个特征的running mean: 1.02 iteration:1, 第二个特征的running var:0.48999999999999994

一开始均值和方差为0和1,momentum为0.3,第一个特征的当前均值为1方差为0,可以自己动手算一下,第一个特征的running_mean=0.7×0+0.3×1=0.3;第一个特征的running_var=0.7×1+0.3×0=0.7;剩下的计算类似,动手算一下加深理解。

(2)nn.BatchNorm2d

再来看一下二维的情况,其实和一维类似,只是特征本身的维度变成了二维: 横轴还是样本数,纵轴还是特征数,还是将三个样本的第一个特征算一下均值方差,第二个第三个特征类似,还是这样一行一行的算,所以这时的输入数据维度会变成四维的:B×C×W×H,B是一个batch样本数,C为特征数,W和H为特征维度,如图中应该是:3×3×2×2,下面看一下实现,为区别B和C,代码中B为3,即三个样本,C为6,即六个特征:

flag = 1 # flag = 0 if flag: batch_size = 3 num_features = 6 momentum = 0.3 features_shape = (2, 2) feature_map = torch.ones(features_shape) # 2D feature_maps = torch.stack([feature_map*(i+1) for i in range(num_features)], dim=0) # 3D feature_maps_bs = torch.stack([feature_maps for i in range(batch_size)], dim=0) # 4D print("input data:\n{} shape is {}".format(feature_maps_bs, feature_maps_bs.shape)) bn = nn.BatchNorm2d(num_features=num_features, momentum=momentum) running_mean, running_var = 0, 1 for i in range(2): outputs = bn(feature_maps_bs) print("\niter:{}, running_mean.shape: {}".format(i, bn.running_mean.shape)) print("iter:{}, running_var.shape: {}".format(i, bn.running_var.shape)) print("iter:{}, weight.shape: {}".format(i, bn.weight.shape)) print("iter:{}, bias.shape: {}".format(i, bn.bias.shape))

结果如下:

input data: tensor([[[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]], [[4., 4.], [4., 4.]], [[5., 5.], [5., 5.]], [[6., 6.], [6., 6.]]], [[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]], [[4., 4.], [4., 4.]], [[5., 5.], [5., 5.]], [[6., 6.], [6., 6.]]], [[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]], [[4., 4.], [4., 4.]], [[5., 5.], [5., 5.]], [[6., 6.], [6., 6.]]]]) shape is torch.Size([3, 6, 2, 2]) iter:0, running_mean.shape: torch.Size([6]) iter:0, running_var.shape: torch.Size([6]) iter:0, weight.shape: torch.Size([6]) iter:0, bias.shape: torch.Size([6]) iter:1, running_mean.shape: torch.Size([6]) iter:1, running_var.shape: torch.Size([6]) iter:1, weight.shape: torch.Size([6]) iter:1, bias.shape: torch.Size([6])

观察一下四个参数的size为6,因为是逐特征的计算。

(3)nn.BatchNorm3d

只是特征维度变成三维,计算方式还是逐特征的,看一下实现,注意这里特征数又变成了4:

flag = 1 # flag = 0 if flag: batch_size = 3 num_features = 4 momentum = 0.3 features_shape = (2, 2, 3) feature = torch.ones(features_shape) # 3D feature_map = torch.stack([feature * (i + 1) for i in range(num_features)], dim=0) # 4D feature_maps = torch.stack([feature_map for i in range(batch_size)], dim=0) # 5D print("input data:\n{} shape is {}".format(feature_maps, feature_maps.shape)) bn = nn.BatchNorm3d(num_features=num_features, momentum=momentum) running_mean, running_var = 0, 1 for i in range(2): outputs = bn(feature_maps) print("\niter:{}, running_mean.shape: {}".format(i, bn.running_mean.shape)) print("iter:{}, running_var.shape: {}".format(i, bn.running_var.shape)) print("iter:{}, weight.shape: {}".format(i, bn.weight.shape)) print("iter:{}, bias.shape: {}".format(i, bn.bias.shape))

结果如下:

input data: tensor([[[[[1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.]]], [[[2., 2., 2.], [2., 2., 2.]], [[2., 2., 2.], [2., 2., 2.]]], [[[3., 3., 3.], [3., 3., 3.]], [[3., 3., 3.], [3., 3., 3.]]], [[[4., 4., 4.], [4., 4., 4.]], [[4., 4., 4.], [4., 4., 4.]]]], [[[[1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.]]], [[[2., 2., 2.], [2., 2., 2.]], [[2., 2., 2.], [2., 2., 2.]]], [[[3., 3., 3.], [3., 3., 3.]], [[3., 3., 3.], [3., 3., 3.]]], [[[4., 4., 4.], [4., 4., 4.]], [[4., 4., 4.], [4., 4., 4.]]]], [[[[1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.]]], [[[2., 2., 2.], [2., 2., 2.]], [[2., 2., 2.], [2., 2., 2.]]], [[[3., 3., 3.], [3., 3., 3.]], [[3., 3., 3.], [3., 3., 3.]]], [[[4., 4., 4.], [4., 4., 4.]], [[4., 4., 4.], [4., 4., 4.]]]]]) shape is torch.Size([3, 4, 2, 2, 3]) iter:0, running_mean.shape: torch.Size([4]) iter:0, running_var.shape: torch.Size([4]) iter:0, weight.shape: torch.Size([4]) iter:0, bias.shape: torch.Size([4]) iter:1, running_mean.shape: torch.Size([4]) iter:1, running_var.shape: torch.Size([4]) iter:1, weight.shape: torch.Size([4]) iter:1, bias.shape: torch.Size([4])
最新回复(0)