n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。 上图为 8 皇后问题的一种解法。 给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。 每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
示例:
输入:4 输出:[ [".Q..", // 解法 1 "...Q", "Q...", "..Q."], ["..Q.", // 解法 2 "Q...", "...Q", ".Q.."] ] 解释: 4 皇后问题存在两个不同的解法。提示: 皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。
为了判断一个位置所在的列和两条斜线上是否已经有皇后,使用三个集合 columns、diagonals1 和 diagonals2 分别记录每一列以及两个方向的每条斜线上是否有皇后。
列的表示法很直观,一共有 N 列,每一列的下标范围从 0 到 N-1,使用列的下标即可明确表示每一列。
如何表示两个方向的斜线呢?对于每个方向的斜线,需要找到斜线上的每个位置的行下标与列下标之间的关系。
方向一的斜线为从左上到右下方向,同一条斜线上的每个位置满足行下标与列下标之差相等,例如 (0,0) 和 (3,3) 在同一条方向一的斜线上。因此使用行下标与列下标之差即可明确表示每一条方向一的斜线。
方向二的斜线为从右上到左下方向,同一条斜线上的每个位置满足行下标与列下标之和相等,例如 (3,0) 和 (1,2) 在同一条方向二的斜线上。因此使用行下标与列下标之和即可明确表示每一条方向二的斜线。 每次放置皇后时,对于每个位置判断其是否在三个集合中,如果三个集合都不包含当前位置,则当前位置是可以放置皇后的位置。
class Solution { public List<List<String>> solveNQueens(int n) { List<List<String>> solutions = new ArrayList<List<String>>(); int[] queens = new int[n]; Arrays.fill(queens, -1); Set<Integer> columns = new HashSet<Integer>(); Set<Integer> diagonals1 = new HashSet<Integer>(); Set<Integer> diagonals2 = new HashSet<Integer>(); backtrack(solutions, queens, n, 0, columns, diagonals1, diagonals2); return solutions; } public void backtrack(List<List<String>> solutions, int[] queens, int n, int row, Set<Integer> columns, Set<Integer> diagonals1, Set<Integer> diagonals2) { if (row == n) { List<String> board = generateBoard(queens, n); solutions.add(board); } else { for (int i = 0; i < n; i++) { if (columns.contains(i)) { continue; } int diagonal1 = row - i; if (diagonals1.contains(diagonal1)) { continue; } int diagonal2 = row + i; if (diagonals2.contains(diagonal2)) { continue; } queens[row] = i; columns.add(i); diagonals1.add(diagonal1); diagonals2.add(diagonal2); backtrack(solutions, queens, n, row + 1, columns, diagonals1, diagonals2); queens[row] = -1; columns.remove(i); diagonals1.remove(diagonal1); diagonals2.remove(diagonal2); } } } public List<String> generateBoard(int[] queens, int n) { List<String> board = new ArrayList<String>(); for (int i = 0; i < n; i++) { char[] row = new char[n]; Arrays.fill(row, '.'); row[queens[i]] = 'Q'; board.add(new String(row)); } return board; } }