pytorch学习笔记---回归问题1

tech2022-10-14  108

目录

概要导包导入数据展示数据 搭建模型定义计算步骤输出运算结果

概要

本节主要针对MNIST数据集的数字识别问题,写出一个解决回归问题的方法。初步体会机器学习的工作流程

导包

import torch from torch import nn from torch.nn import functional as F from torch import optim import torchvision from matplotlib import pyplot as plt #画图专用的文件 from utils import plot_image, plot_curve, one_hot

导入数据

batch_size = 512 # step1. load dataset加载数据集 train_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('mnist_data', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('mnist_data/', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size, shuffle=False)

展示数据

x, y = next(iter(train_loader)) print(x.shape, y.shape, x.min(), x.max()) plot_image(x, y, 'image sample')

搭建模型

class Net(nn.Module): def __init__(self): super(Net, self).__init__() # xw+b self.fc1 = nn.Linear(28*28, 256) self.fc2 = nn.Linear(256, 64) self.fc3 = nn.Linear(64, 10) def forward(self, x): # x: [b, 1, 28, 28] # h1 = relu(xw1+b1) 公式 x = F.relu(self.fc1(x)) # h2 = relu(h1w2+b2) 公式 x = F.relu(self.fc2(x)) # h3 = h2w3+b3 公式 x = self.fc3(x) return x

定义计算步骤

net = Net() # [w1, b1, w2, b2, w3, b3] #优化器 optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) #记录loss train_loss = [] for epoch in range(3): for batch_idx, (x, y) in enumerate(train_loader): # x: [b, 1, 28, 28], y: [512] # [b, 1, 28, 28] => [b, 784] 从四维变换成二维 x = x.view(x.size(0), 28*28) # => [b, 10] out = net(x) # [b, 10] y_onehot = one_hot(y) # loss = mse(out, y_onehot) loss = F.mse_loss(out, y_onehot) # 清零梯度 optimizer.zero_grad() loss.backward() # w' = w - lr*grad 梯度更新 optimizer.step() train_loss.append(loss.item()) # 输出 if batch_idx % 10==0: print(epoch+1, batch_idx, loss.item()) plot_curve(train_loss) # we get optimal [w1, b1, w2, b2, w3, b3]

输出运算结果

plot_curve(train_loss) # we get optimal [w1, b1, w2, b2, w3, b3] total_correct = 0 for x,y in test_loader: x = x.view(x.size(0), 28*28) out = net(x) # out: [b, 10] => pred: [b] pred = out.argmax(dim=1) correct = pred.eq(y).sum().float().item() total_correct += correct total_num = len(test_loader.dataset) acc = total_correct / total_num print('test acc:', acc)
最新回复(0)