VISUALIZING MODELS, DATA, AND TRAINING WITH TENSORBOARD

tech2022-10-25  134

在A 60 Minute Blitz,我们向大家展示了如何加载数据,如何通过定义为的子类的nn.Module模型提供数据,如何在训练数据上训练该模型以及如何在测试数据上对其进行测试。为了了解发生的情况,我们在模型训练期间打印一些统计数据,以了解训练是否在进行。但是,我们可以做得更好:PyTorch与TensorBoard集成在一起,TensorBoard是一种工具,用于可视化神经网络训练运行的结果。本教程使用Fashion-MNIST数据集说明了其某些功能,该 数据集 可以使用torchvision.datasets读入PyTorch。

在本教程中,我们将学习如何:

读入数据并进行适当的转换(与先前的教程几乎相同)。

设置TensorBoard。

写入TensorBoard。

使用TensorBoard检查模型架构。

使用TensorBoard以更少的代码创建我们在上一个教程中创建的可视化的交互式版本

具体来说,在第5点,我们将看到:

检查我们训练数据的几种方法

在训练过程中如何跟踪模型的性能

训练后如何评估模型的性能。

我们将从与CIFAR-10教程类似的样板代码开始:

# imports import matplotlib.pyplot as plt import numpy as np ​ import torch import torchvision import torchvision.transforms as transforms ​ import torch.nn as nn import torch.nn.functional as F import torch.optim as optim ​ # transforms transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) ​ # datasets trainset = torchvision.datasets.FashionMNIST('./data', download=True, train=True, transform=transform) testset = torchvision.datasets.FashionMNIST('./data', download=True, train=False, transform=transform) ​ # dataloaders trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) ​ ​ testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) ​ # constant for classes classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot') ​ # helper function to show an image # (used in the `plot_classes_preds` function below) def matplotlib_imshow(img, one_channel=False): if one_channel: img = img.mean(dim=0) img = img / 2 + 0.5 # unnormalize npimg = img.numpy() if one_channel: plt.imshow(npimg, cmap="Greys") else: plt.imshow(np.transpose(npimg, (1, 2, 0)))

我们将在该教程中定义一个类似的模型体系结构,仅需进行少量修改即可解决以下事实:图像现在是一个通道而不是三个通道,而图像是28x28而不是32x32:

class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) ​ def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ​ ​ net = Net()

我们将optimizer与criterion之前定义相同:

criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

 

 

1. TensorBoard setup

现在我们将设置TensorBoard,tensorboard从我们的关键对象导入torch.utils并定义它 SummaryWriter,该关键对象用于将信息写入TensorBoard。

from torch.utils.tensorboard import SummaryWriter ​ # default `log_dir` is "runs" - we'll be more specific here writer = SummaryWriter('runs/fashion_mnist_experiment_1')

请注意,仅此行会创建一个runs/fashion_mnist_experiment_1 文件夹。

 

2. Writing to TensorBoard

现在,让我们写一个像我们TensorBoard - specifically, a grid - using make_grid.

# get some random training images dataiter = iter(trainloader) images, labels = dataiter.next() ​ # create grid of images img_grid = torchvision.utils.make_grid(images) ​ # show images matplotlib_imshow(img_grid, one_channel=True) ​ # write to tensorboard writer.add_image('four_fashion_mnist_images', img_grid)

运行

tensorboard --logdir=runs

从命令行,然后导航到https:// localhost:6006 应该显示以下内容。

现在大家知道如何使用TensorBoard了!但是,此示例可以在Jupyter Notebook中完成-TensorBoard真正擅长的地方是创建交互式可视化。我们将在接下来的内容中介绍其中之一,并在本教程结束时介绍更多内容。

 

3. Inspect the model using TensorBoard

TensorBoard的优势之一是其可视化复杂模型结构的能力。让我们可视化我们构建的模型。

writer.add_graph(net, images) writer.close()

现在刷新TensorBoard后,大家应该会看到一个“ Graphs”标签,如下所示:

继续并双击“ Net”以展开它,查看构成模型的各个操作的详细视图。

TensorBoard具有非常方便的功能,接下来我们将介绍,用于可视化高维数据,例如在低维空间中的图像数据;

 

4. Adding a “Projector” to TensorBoard

我们可以通过add_embedding方法可视化高维数据的低维表示

# helper function def select_n_random(data, labels, n=100): ''' Selects n random datapoints and their corresponding labels from a dataset ''' assert len(data) == len(labels) ​ perm = torch.randperm(len(data)) return data[perm][:n], labels[perm][:n] ​ # select random images and their target indices images, labels = select_n_random(trainset.data, trainset.targets) ​ # get the class labels for each image class_labels = [classes[lab] for lab in labels] ​ # log embeddings features = images.view(-1, 28 * 28) writer.add_embedding(features, metadata=class_labels, label_img=images.unsqueeze(1)) writer.close()

现在,在TensorBoard的“投影仪”选项卡中,大家可以看到这100张图像-每个图像784维-向下投影到三维空间中。此外,这是交互式的:大家可以单击并拖动以旋转三维投影。最后,一些技巧可以使可视化效果更容易看到:选择左上方的“颜色:标签”,以及启用“夜间模式”,这将使图像更容易看到,因为它们的背景是白色的:

现在我们已经彻底inspected了我们的数据,让我们展示了TensorBoard如何从培训开始就可以使跟踪模型的培训和评估更加清晰。

 

5. Tracking model training with TensorBoard

在前面的示例中,我们仅每2000次迭代printed 一次模型的运行损失。现在,我们将运行损失记录到TensorBoard中,并通过模型查看模型所做的预测plot_classes_preds。

# helper functions ​ def images_to_probs(net, images): ''' Generates predictions and corresponding probabilities from a trained network and a list of images ''' output = net(images) # convert output probabilities to predicted class _, preds_tensor = torch.max(output, 1) preds = np.squeeze(preds_tensor.numpy()) return preds, [F.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)] ​ ​ def plot_classes_preds(net, images, labels): ''' Generates matplotlib Figure using a trained network, along with images and labels from a batch, that shows the network's top prediction along with its probability, alongside the actual label, coloring this information based on whether the prediction was correct or not. Uses the "images_to_probs" function. ''' preds, probs = images_to_probs(net, images) # plot the images in the batch, along with predicted and true labels fig = plt.figure(figsize=(12, 48)) for idx in np.arange(4): ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[]) matplotlib_imshow(images[idx], one_channel=True) ax.set_title("{0}, {1:.1f}%\n(label: {2})".format( classes[preds[idx]], probs[idx] * 100.0, classes[labels[idx]]), color=("green" if preds[idx]==labels[idx].item() else "red")) return fig

最后,让我们使用与之前教程中相同的模型训练代码来训练模型,但是每1000批将结果写入TensorBoard,而不是打印到控制台。这是使用add_scalar 函数完成的 。

此外,在训练过程中,我们将生成一幅图像,显示该批次中包含的四幅图像的模型预测与实际结果。

running_loss = 0.0 for epoch in range(1): # loop over the dataset multiple times ​ for i, data in enumerate(trainloader, 0): ​ # get the inputs; data is a list of [inputs, labels] inputs, labels = data ​ # zero the parameter gradients optimizer.zero_grad() ​ # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() ​ running_loss += loss.item() if i % 1000 == 999: # every 1000 mini-batches... ​ # ...log the running loss writer.add_scalar('training loss', running_loss / 1000, epoch * len(trainloader) + i) ​ # ...log a Matplotlib Figure showing the model's predictions on a # random mini-batch writer.add_figure('predictions vs. actuals', plot_classes_preds(net, inputs, labels), global_step=epoch * len(trainloader) + i) running_loss = 0.0 print('Finished Training')

现在,大家可以查看scalars 选项卡,以查看在15,000次训练迭代中绘制的运行损失:

此外,我们可以查看整个学习过程中模型在任意批次上所做的预测。查看“图像”选项卡,并在“预测与实际”可视化条件下向下滚动以查看此内容;这向我们表明,例如,仅经过3000次训练迭代,该模型就能够区分出视觉上截然不同的类,例如衬衫,运动鞋和外套,尽管它并没有像后来的训练那样confident :

在之前的教程中,我们研究了模型训练后的每类准确性;在这里,我们将使用TensorBoard绘制每个类的精确调用曲线(此处有很好的解释 )。

 

6. Assessing trained models with TensorBoard

# 1. gets the probability predictions in a test_size x num_classes Tensor # 2. gets the preds in a test_size Tensor # takes ~10 seconds to run class_probs = [] class_preds = [] with torch.no_grad(): for data in testloader: images, labels = data output = net(images) class_probs_batch = [F.softmax(el, dim=0) for el in output] _, class_preds_batch = torch.max(output, 1) ​ class_probs.append(class_probs_batch) class_preds.append(class_preds_batch) ​ test_probs = torch.cat([torch.stack(batch) for batch in class_probs]) test_preds = torch.cat(class_preds) ​ # helper function def add_pr_curve_tensorboard(class_index, test_probs, test_preds, global_step=0): ''' Takes in a "class_index" from 0 to 9 and plots the corresponding precision-recall curve ''' tensorboard_preds = test_preds == class_index tensorboard_probs = test_probs[:, class_index] ​ writer.add_pr_curve(classes[class_index], tensorboard_preds, tensorboard_probs, global_step=global_step) writer.close() ​ # plot all the pr curves for i in range(len(classes)): add_pr_curve_tensorboard(i, test_probs, test_preds)

现在,大家将看到一个“ PR Curves”选项卡,其中包含每个类别的精确调用曲线。继续戳一下;大家会看到,在某些类别上,模型的“曲线下面积”接近100%,而在另一些类别上,该面积更低:

 

 

这是TensorBoard和PyTorch与之集成的介绍。当然,大家可以在Jupyter Notebook中完成TensorBoard所做的所有操作,但是使用TensorBoard,大家可以获得默认情况下是交互式的视觉效果。

 

接下来,给大家介绍一下租用GPU做实验的方法,我们是在智星云租用的GPU,使用体验很好。具体大家可以参考:智星云官网: http://www.ai-galaxy.cn/,淘宝店:https://shop36573300.taobao.com/公众号: 智星AI

 

       

 

 

 

 

参考文献​:

https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

https://github.com/zalandoresearch/fashion-mnist

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

最新回复(0)