SparkSql MAPJOIN优化之小表left join大表

tech2022-11-06  120

首先我们要了解MAPJOIN优化原理,这里简要说明下

Spark Broadcast hash join(Hive map join同理)

1,把小表广播到所有大表分布的节点上,在每个节点上分别进行单机hash join

2,left join时只能广播右表

执行基本条件:小表必须小于参数spark.sql.autoBroadcastJoinThreshold, 默认为10M    

 

sql 场景小表需要left join大表   小表150M左右   大表1T左右

 

原始sql(广播左表,未成功,因为left join只支持广播右表)

create table tmp.iapp_mkt_per_imei_pkg_repair_t2_not_default_20200812_1 as

select /*+MAPJOIN(a) */ a.imei,b.package,1 status,1 install_type,b.imei imei_b

    from

        (select imei from tmp.iapp_mkt_per_imei_only_repair_20200812 where install_type = 0 and tail != 'default') a

        left join join

        (select imei,package from edw.sys_app_list_fact  where data_date = 20200812 and tail != 'default' and imei is not null and status in (1,2))b

        on a.imei = b.imei

优化思路:使用with将小表提前处理,多次复用,将left join转化为可以进行广播变量的join,然后再加进行小表与小表right join进行数据补偿,此方法只适合小表left join 大表

优化后sql

create table tmp.lanfz_222 as

with iapp_mkt as (select imei from tmp.iapp_mkt_per_imei_only_repair_20200812 where install_type = 0 and tail != 'default')

select /*+BROADCAST(a) */

    c.imei,b.package,1 status,1 install_type,b.imei imei_b

    from

        iapp_mkt a

    join

        (select imei,package from edw.sys_app_list_fact  where data_date = 20200812 and tail != 'default' and imei is not null and status in (1,2))b

    on a.imei = b.imei

    right join

        iapp_mkt c

    on c.imei = b.imei;

结果数据量对比,完全一致

sql耗时对比:

原始sql:Time taken: 1369.239 seconds

优化后sql:Time taken: 680.239 seconds

 

 

最新回复(0)