socket 函数

tech2022-11-27  113

socket() 函数

Linux 下的 socket() 函数

在 Linux 下使用 <sys/socket.h> 头文件中 socket() 函数来创建套接字,原型为:

int socket(int af, int type, int protocol);

af 为地址族(Address Family),也就是 IP 地址类型,常用的有 AF_INET 和 AF_INET6。AF 是“Address Family”的简写,INET是“Inetnet”的简写。AF_INET 表示 IPv4 地址,例如 127.0.0.1;AF_INET6 表示 IPv6 地址,例如 1030::C9B4:FF12:48AA:1A2B。 大家需要记住127.0.0.1,它是一个特殊IP地址,表示本机地址,后面的教程会经常用到。 你也可以使用 PF 前缀,PF 是“Protocol Family”的简写,它和 AF 是一样的。例如,PF_INET 等价于 AF_INET,PF_INET6 等价于 AF_INET6。

type 为数据传输方式/套接字类型,常用的有 SOCK_STREAM(流格式套接字/面向连接的套接字) 和 SOCK_DGRAM(数据报套接字/无连接的套接字),我们已经在《套接字有哪些类型》一节中进行了介绍。

protocol 表示传输协议,常用的有 IPPROTO_TCP 和 IPPTOTO_UDP,分别表示 TCP 传输协议和 UDP 传输协议。

一般情况下有了 af 和 type 两个参数就可以创建套接字了,操作系统会自动推演出协议类型,除非遇到这样的情况:有两种不同的协议支持同一种地址类型和数据传输类型。如果我们不指明使用哪种协议,操作系统是没办法自动推演的。

int tcp_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); //IPPROTO_TCP表示TCP协议 int udp_socket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); //IPPROTO_UDP表示UDP协议 //上面两种情况都只有一种协议满足条件,可以将 protocol 的值设为 0,系统会自动推演出应该使用什么协议,如下所示: int tcp_socket = socket(AF_INET, SOCK_STREAM, 0); //创建TCP套接字 int udp_socket = socket(AF_INET, SOCK_DGRAM, 0); //创建UDP套接字
Windows 下也使用 socket() 函数来创建套接字
//原型为: SOCKET socket(int af, int type, int protocol); //除了返回值类型不同,其他都是相同的。Windows 不把套接字作为普通文件对待,而是返回 SOCKET 类型的句柄。请看下面的例子: SOCKET sock = socket(AF_INET, SOCK_STREAM, 0); //创建TCP套接字

bind() 函数

socket() 函数用来创建套接字,确定套接字的各种属性,然后服务器端要用 bind() 函数将套接字与特定的 IP 地址和端口绑定起来,只有这样,流经该 IP 地址和端口的数据才能交给套接字处理。类似地,客户端也要用 connect() 函数建立连接。

//bind() 函数的原型为: int bind(int sock, struct sockaddr *addr, socklen_t addrlen); //Linux int bind(SOCKET sock, const struct sockaddr *addr, int addrlen); //Windows //创建套接字 int serv_sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); //创建sockaddr_in结构体变量 struct sockaddr_in serv_addr; memset(&serv_addr, 0, sizeof(serv_addr)); //每个字节都用0填充 serv_addr.sin_family = AF_INET; //使用IPv4地址 serv_addr.sin_addr.s_addr = inet_addr("127.0.0.1"); //具体的IP地址 serv_addr.sin_port = htons(1234); //端口 //将套接字和IP、端口绑定 bind(serv_sock, (struct sockaddr*)&serv_addr, sizeof(serv_addr)); //sockaddr_in 结构体 struct sockaddr_in{ sa_family_t sin_family; //地址族(Address Family),也就是地址类型 uint16_t sin_port; //16位的端口号 struct in_addr sin_addr; //32位IP地址 char sin_zero[8]; //不使用,一般用0填充 }; //sockaddr_in 的第3个成员是 in_addr 类型的结构体 struct in_addr{ in_addr_t s_addr; //32位的IP地址 }; //in_addr_t 在头文件 <netinet/in.h> 中定义,等价于 unsigned long,长度为4个字节。 //也就是说,s_addr 是一个整数,而IP地址是一个字符串,所以需要 inet_addr() 函数进行转换,例如: unsigned long ip = inet_addr("127.0.0.1"); printf("%ld\n", ip);

图解 sockaddr_in 结构体

sin_family 和 socket() 的第一个参数的含义相同,取值也要保持一致。

sin_prot 为端口号。uint16_t 的长度为两个字节,理论上端口号的取值范围为 0~65536,但 0~1023 的端口一般由系统分配给特定的服务程序,例如 Web 服务的端口号为 80,FTP 服务的端口号为 21,所以我们的程序要尽量在 1024~65536 之间分配端口号。 端口号需要用 htons() 函数转换,后面会讲解为什么。

sin_addr 是 struct in_addr 结构体类型的变量,下面会详细讲解。

sin_zero[8] 是多余的8个字节,没有用,一般使用 memset() 函数填充为 0。

bind() 第二个参数的类型为 sockaddr,而代码中却使用 sockaddr_in,然后再强制转换为 sockaddr,这是为什么呢?

//sockaddr 结构体的定义如下: struct sockaddr{ sa_family_t sin_family; //地址族(Address Family),也就是地址类型 char sa_data[14]; //IP地址和端口号 };

下图是 sockaddr 与 sockaddr_in 的对比(括号中的数字表示所占用的字节数): sockaddr 和 sockaddr_in 的长度相同,都是16字节,只是将IP地址和端口号合并到一起,用一个成员 sa_data 表示。要想给 sa_data 赋值,必须同时指明IP地址和端口号,例如”127.0.0.1:80“,遗憾的是,没有相关函数将这个字符串转换成需要的形式,也就很难给 sockaddr 类型的变量赋值,所以使用 sockaddr_in 来代替。这两个结构体的长度相同,强制转换类型时不会丢失字节,也没有多余的字节。

可以认为,sockaddr 是一种通用的结构体,可以用来保存多种类型的IP地址和端口号,而 sockaddr_in 是专门用来保存 IPv4 地址的结构体。另外还有 sockaddr_in6,用来保存 IPv6 地址,它的定义如下:

struct sockaddr_in6 { sa_family_t sin6_family; //(2)地址类型,取值为AF_INET6 in_port_t sin6_port; //(2)16位端口号 uint32_t sin6_flowinfo; //(4)IPv6流信息 struct in6_addr sin6_addr; //(4)具体的IPv6地址 uint32_t sin6_scope_id; //(4)接口范围ID };

正是由于通用结构体 sockaddr 使用不便,才针对不同的地址类型定义了不同的结构体。

connect() 函数

connect() 函数用来建立连接,它的原型为:

int connect(int sock, struct sockaddr *serv_addr, socklen_t addrlen); //Linux int connect(SOCKET sock, const struct sockaddr *serv_addr, int addrlen); //Windows

各个参数的说明和 bind() 相同,不再赘述。

listen() 函数

通过 listen() 函数可以让套接字进入被动监听状态,它的原型为:

int listen(int sock, int backlog); //Linux int listen(SOCKET sock, int backlog); //Windows

sock 为需要进入监听状态的套接字,backlog 为请求队列的最大长度。

所谓被动监听,是指当没有客户端请求时,套接字处于“睡眠”状态,只有当接收到客户端请求时,套接字才会被“唤醒”来响应请求。

请求队列

当套接字正在处理客户端请求时,如果有新的请求进来,套接字是没法处理的,只能把它放进缓冲区,待当前请求处理完毕后,再从缓冲区中读取出来处理。如果不断有新的请求进来,它们就按照先后顺序在缓冲区中排队,直到缓冲区满。这个缓冲区,就称为请求队列(Request Queue)。

缓冲区的长度(能存放多少个客户端请求)可以通过 listen() 函数的 backlog 参数指定,但究竟为多少并没有什么标准,可以根据你的需求来定,并发量小的话可以是10或者20。

如果将 backlog 的值设置为 SOMAXCONN,就由系统来决定请求队列长度,这个值一般比较大,可能是几百,或者更多。

当请求队列满时,就不再接收新的请求,对于 Linux,客户端会收到 ECONNREFUSED 错误,对于 Windows,客户端会收到 WSAECONNREFUSED 错误。

注意:listen() 只是让套接字处于监听状态,并没有接收请求。接收请求需要使用 accept() 函数。

accept() 函数

当套接字处于监听状态时,可以通过 accept() 函数来接收客户端请求。它的原型为:

int accept(int sock, struct sockaddr *addr, socklen_t *addrlen); //Linux SOCKET accept(SOCKET sock, struct sockaddr *addr, int *addrlen); //Windows

它的参数与 listen() 和 connect() 是相同的:sock 为服务器端套接字,addr 为 sockaddr_in 结构体变量,addrlen 为参数 addr 的长度,可由 sizeof() 求得。

accept() 返回一个新的套接字来和客户端通信,addr 保存了客户端的IP地址和端口号,而 sock 是服务器端的套接字,大家注意区分。后面和客户端通信时,要使用这个新生成的套接字,而不是原来服务器端的套接字。

accept() 会阻塞程序执行(后面代码不能被执行),直到有新的请求到来。

Linux下数据的接收和发送

write() 的原型为:
ssize_t write(int fd, const void *buf, size_t nbytes);

fd 为要写入的文件的描述符,buf 为要写入的数据的缓冲区地址,nbytes 为要写入的数据的字节数。

size_t 是通过 typedef 声明的 unsigned int 类型;ssize_t 在 “size_t” 前面加了一个"s",代表 signed,即 ssize_t 是通过 typedef 声明的 signed int 类型。

write() 函数会将缓冲区 buf 中的 nbytes 个字节写入文件 fd,成功则返回写入的字节数,失败则返回 -1。

read() 的原型为:
ssize_t read(int fd, void *buf, size_t nbytes);

fd 为要读取的文件的描述符,buf 为要接收数据的缓冲区地址,nbytes 为要读取的数据的字节数。

read() 函数会从 fd 文件中读取 nbytes 个字节并保存到缓冲区 buf,成功则返回读取到的字节数(但遇到文件结尾则返回0),失败则返回 -1。

Windows下数据的接收和发送

Windows 和 Linux 不同,Windows 区分普通文件和套接字,并定义了专门的接收和发送的函数。

从服务器端发送数据使用 send() 函数,它的原型为:

int send(SOCKET sock, const char *buf, int len, int flags);

sock 为要发送数据的套接字,buf 为要发送的数据的缓冲区地址,len 为要发送的数据的字节数,flags 为发送数据时的选项。

返回值和前三个参数不再赘述,最后的 flags 参数一般设置为 0 或 NULL,初学者不必深究。

在客户端接收数据使用 recv() 函数,它的原型为:

int recv(SOCKET sock, char *buf, int len, int flags);
最新回复(0)