基于python的一款简单的通用OCR识别

tech2022-11-27  110

基于python的一款简单的通用OCR识别身份证

预处理校正图像感知、提取目标区域识别目标区域内容预处理校正图像一、对得到的图像进行高斯滤波降噪二、使用霍夫变换检测外轮廓边缘三、找出最小的旋转角度,对图像进行旋转 感知、提取目标区域一、区域生长二、对提取出的信息进行等比放大 识别目标区域内容 话不多说,直入主题 本文就说说怎么自己动手做一个通用的OCR识别身份证,告别对别人的API 的依赖

预处理校正图像

感知、提取目标区域

识别目标区域内容

预处理校正图像

实际应用时所接收的图像不可能每一张都是处于理想化的识别状态,所以在得到图像后,第一步要做的就是对图像进行预处理,将图像进行校正,达到相对比较理想化的识别状态。

一、对得到的图像进行高斯滤波降噪

blur = cv2.GaussianBlur(image, (7, 7), 0)

二、使用霍夫变换检测外轮廓边缘

lines = cv2.HoughLines(canny, 1, np.pi / 180, 118)

三、找出最小的旋转角度,对图像进行旋转

def rotate_about_center2(src, radian, scale=1.): w = src.shape[1] h = src.shape[0] angle = radian * 180 / np.pi nw = (abs(np.sin(radian) * h) + abs(np.cos(radian) * w)) * scale nh = (abs(np.cos(radian) * h) + abs(np.sin(radian) * w)) * scale rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale) rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0])) rot_mat[0, 2] += rot_move[0] rot_mat[1, 2] += rot_move[1] return cv2.warpAffine(src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4) def get_group(arr): # 按照4个弧度区间分组,返回不为空的分组数据 radian_45 = np.pi / 4 radian_90 = np.pi / 2 radian_135 = radian_45 * 3 ret_arr = [[], [], [], []] for i in range(len(arr)): if arr[i] < radian_45: ret_arr[0].append(arr[i]) elif arr[i] < radian_90: ret_arr[1].append(arr[i]) elif arr[i] < radian_135: ret_arr[2].append(arr[i]) else: ret_arr[3].append(arr[i]) while [] in ret_arr: ret_arr.remove([]) return ret_arr def get_min_var_avg(arr): # 按照不同弧度区间分组,返回方差最小的一个分组的弧度平均值 group_arr = get_group(arr) if len(group_arr) <= 1: var_arr = group_arr else: var_arr = [np.var(group_arr[i]) for i in range(len(group_arr))] min_var = 10000 min_i = 0 for i in range(len(var_arr)): if var_arr[i][0] < min_var: min_var = var_arr[i] min_i = i avg = np.mean(group_arr[min_i]) return avg def get_rotate_radian(radian, reverse=False): # 旋转弧度转换 radian_45 = np.pi / 4 radian_90 = np.pi / 2 radian_135 = radian_45 * 3 radian_180 = np.pi if radian < radian_45: ret_radian = radian elif radian < radian_90: ret_radian = radian - radian_90 elif radian < radian_135: ret_radian = radian - radian_90 else: ret_radian = radian - radian_180 if reverse: ret_radian += radian_90 # print(ret_radian) return ret_radian

此处借鉴了一位博主的思路,我记得我当时收藏过这位博主的,确实他的这个思路很简单粗暴,关键是效率和质量都很高。但是今天找了一上午没找到这篇文章了。

到此第一步的图像预处理就完成了,所有的图像被接收后都得先进行旋转校正,说白了就是将里面的文字摆正了。不然使用公共库识别的时候会严重影响精度

这一步的总的接口函数:

def rotate(image): blur = cv2.GaussianBlur(image, (7, 7), 0) canny = cv2.Canny(blur, 20, 150, 3) lines = cv2.HoughLines(canny, 1, np.pi / 180, 118) l = len(lines[0]) theta_arr = [lines[0][i][1] for i in range(l)] rotate_theta = get_min_var_avg(theta_arr) img2 = rotate_about_center2(image, get_rotate_radian(rotate_theta, image.shape[0] > image.shape[1])) return img2

感知、提取目标区域

这一步稍微复杂一点,采用了一点图像分割技术里的区域生长概念。其实了解的朋友应该知道,区域生长说复杂其实也不复杂,就是一个局部检索的变相运用而已。 相关的概念链接我会放在本文最末,有兴趣的可以去看看。讲的特别细致

一、区域生长

它的大体步骤是: a、找到没有归属的像素 b、以这个像素为中心,它4邻域的像素如果满足生长准则,就与这个中心像素合并 c、不停得从这个合并的区域中提取像素作为中心像素,重复步骤b d、当找不到任何一个可以合并的像素时,生长结束

class Point(object): def __init__(self, x, y): self.x = x self.y = y def getX(self): return self.x def getY(self): return self.y def getGrayDiff(img, currentPoint, tmpPoint): return abs(int(img[currentPoint.x, currentPoint.y]) - int(img[tmpPoint.x, tmpPoint.y])) def selectConnects(p): if p != 0: connects = [Point(-1, -1), Point(0, -1), Point(1, -1), Point(1, 0), Point(1, 1), Point(0, 1), Point(-1, 1), Point(-1, 0)] else: connects = [Point(0, -1), Point(1, 0), Point(0, 1), Point(-1, 0)] return connects def regionGrow(img, seeds, thresh, p=1): height, weight = img.shape seedMark = np.zeros(img.shape) seedList = [] for seed in seeds: seedList.append(seed) label = 1 connects = selectConnects(p) while (len(seedList) > 0): currentPoint = seedList.pop(0) seedMark[currentPoint.x, currentPoint.y] = label for i in range(8): tmpX = currentPoint.x + connects[i].x tmpY = currentPoint.y + connects[i].y if tmpX < 0 or tmpY < 0 or tmpX >= height or tmpY >= weight: continue grayDiff = getGrayDiff(img, currentPoint, Point(tmpX, tmpY)) if grayDiff < thresh and seedMark[tmpX, tmpY] == 0: seedMark[tmpX, tmpY] = label seedList.append(Point(tmpX, tmpY)) return seedMark

区域生长 此步骤用于身份证图像上的效果就是,生长停止后的图像只会剩下文字信息与头像图像了。我也试过用比较传统的OTSU及自适应阈值处理等方式,这些方式均会对身份证上的信息产生影响,造成图像信息部分丢失。 所以这里就采用区域生长的方式,相当于将身份证的卡片底色腐蚀掉。 对生长停止后的信息进行相应的腐蚀+二值处理,得到一个掩膜。使用这个掩膜对原图像进行掩膜处理,及提取出需要识别的文字信息了。

def adjust_image(image): gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) ret, binary = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY) median_x = np.array(gray).shape[1] // 2 median_y = np.array(gray).shape[0] // 2 seeds = [Point(median_x, median_y)] pic = regionGrow(gray, seeds, 3) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17, 17)) pic_dilate = cv2.morphologyEx(pic, cv2.MORPH_DILATE, kernel) mask = pic_dilate - binary kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 15)) mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, kernel) mask_ = np.zeros(mask.shape, dtype=np.uint8) ret, mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY) indexs = np.argwhere(mask == 255) for index in indexs: mask_[index[0], index[1]] = 255 image = cv2.add(image, np.zeros(np.shape(image), dtype=np.uint8), mask=mask_) return image

二、对提取出的信息进行等比放大

这一步的目的是为了避免有时候得到的图像成像比较小,影响识别,所以对提取的目标区域进行放大

target_points = [(0, 0), (0, image.shape[0]), (image.shape[1], image.shape[0]), (image.shape[1], 0)] four_points = [(flag[0], flag[1]), (flag[0], flag[1]+flag[3]), (flag[0] + flag[2], flag[1] + flag[3]), (flag[0] + flag[2], flag[1])] target_points = np.array(target_points, np.float32) four_points = np.array(four_points, np.float32) M = cv2.getPerspectiveTransform(four_points, target_points) Rotated= cv2.warpPerspective(image, M, (flag[2], flag[3]))

以上两步算是把前期的准备工作做完了。下面是最后一步,也是最简单的一步。进行识别了

识别目标区域内容

这一步采用的python的pytesseract库进行识别,很简单了,就不一一叙述了

def recognition(img): img_data = np.array(img) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) ret, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) result = pytesseract.image_to_string(binary, lang='chi_sim') return result id_num = demo_2.recognition(Rotated) if bool(id_num) == False: id_num = demo_2.recognition(image) with open('./id.txt', 'w')as p: p.write(id_num) with open('./id.txt', 'r')as p: result = p.readlines() results = [] for i in result: results.append(re.findall(r'[\u4e00-\u9fa5-a-zA-Z0-9]', i)) # print("姓名:", ''.join(results[0])) flag = False for result in results: if result != []: res = [] name = [] result = ''.join(result) res.append(re.findall(r'[0-9A-Z]', result)) name.append(re.findall(r'[\u4e00-\u9fa5]', result)) if name != [] and flag == False: print("姓名:", ''.join(name[0])) flag = True if len(res[0]) >= 11: print("身份证号码:", ''.join(res[0]))

需要源码的请收藏本文并在评论区留下邮箱

最新回复(0)