释放无限光明的是人心,制造无边黑暗的也是人心,光明和黑暗交织着,厮杀着,这就是我们为之眷恋又万般无奈的人世间。
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Each input file contains one test case which gives a positive integer N in the range (0,104).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
2222
Sample Output 2:
2222 - 2222 = 0000
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <vector>
#include <ctime>
#include <cctype>
#include <bitset>
#include <utility>
#include <sstream>
#include <complex>
#include <iomanip>
#include<climits>//INT_MAX
#define PP pair<ll,int>
#define inf 0x3f3f3f3f
#define llinf 0x3f3f3f3f3f3f3f3fll
#define dinf 1000000000000.0
#define PI 3.1415926
typedef long long ll;
using namespace std;
int const mod=1e9+7;
const int maxn=3e5+10;
char S[6];
bool cmp(char a,char b){
return a>b;
}
int main()
{
int n,jg;
scanf("%s",S);
do{
while(strlen(S)<4)
S[strlen(S)]='0';
S[4]='\0';
sort(S,S+4);
int mi=atoi(S);
sort(S,S+4,cmp);
int mx=atoi(S);
jg=mx-mi;
printf("%04d - %04d = %04d\n",mx,mi,jg);
sprintf(S,"%d",jg);
if(jg==0)
return 0;
}while(jg!=6174);
return 0;
}