6 Python-OpenCV

tech2022-07-16  180

6 Python-OpenCV(ing)

6.1基本知识6.1.1搭建环境6.1.2读图、显示灰度图、显示图片大小、图片另存6.1.3读取视频数据6.1.4图像切片、R/G/B提取、使用matplotlib显示图像大小6.1.5边界填充6.1.6阈值处理6.1.7腐蚀和膨胀处理

6.1基本知识

6.1.1搭建环境

python目录下执行pip install opencv-python或者进入到https://www.lfd.uci.edu/~gohlke/pythonlibs/找到OpenCV与python对应的版本号和系统下载即可,然后在将其复制到python安装目录,然后在命令端输入pip install ….whl等。

6.1.2读图、显示灰度图、显示图片大小、图片另存

图片由多个像素组成,而像素在OpenCV里则被表示成一个个RGB的矩阵。

import cv2 img=cv2.imread('test.jpg') #OpenCV读取当前目录下的图片并赋值给变量 img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #将读取到图片转成灰度图,参数1必须先是imread的 cv2.imshow("img_gray", img_gray) #显示图片,参数1是对话框名称,参数2是显示某种类型的图片 print(img.shape) #打印出图片大小 cv2.imwrite('test1.jpg',img_gray) #将打开的图片另存为... cv2.waitKey(0) #窗口显示时间,0表示暂停窗口 cv2.destroyAllWindows()

6.1.3读取视频数据

import cv2 vc = cv2.VideoCapture('movie.avi') #打开当前目录下的视频文件 if vc.isOpened(): #不能换成while循环,会卡在读取状态中 oepn, frame = vc.read() #其中open是布尔类型,表示打开,frame即读取的帧 else: open = False while open: ret, frame = vc.read() #如果读取到的帧不为空,则就ret否则报错 if frame is None: break if ret == True: gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #将读取到的帧全部转换成灰度图 cv2.imshow('result', gray) #一帧一帧的展示出视频 if cv2.waitKey(10) & 0xFF == 27: #如果waitkey(0)则变成单帧暂停了,其中参数可调表示播放速度 break vc.release() cv2.destroyAllWindows()

6.1.4图像切片、R/G/B提取、使用matplotlib显示图像大小

import cv2 #opencv读取的格式是BGR import numpy as np #数组处理库 import matplotlib.pyplot as plt #Matplotlib是RGB img = cv2.imread('test.jpg') test_demo = img[0:200,0:200] #图片切片 cv2.imwrite('test_demo.jpg',test_demo) #切片图另存为… b,g,r=cv2.split(img) #按R/G/B切片图片 cv2.imwrite('test_demo_b.jpg',b) test_rgb = cv2.merge((r,g,b)) #将BGR的图片转成RGB图片,方便Matplotlib显示 plt.imshow(test_rgb) plt.show() #暂停matplotlib窗口

6.1.5边界填充

import cv2 import numpy as np import matplotlib.pyplot as plt top_size,bottom_size,left_size,right_size = (50,50,50,50) img_init = cv2.imread('test.jpg') b,g,r = cv2.split(img_init) img = cv2.merge((r,g,b)) #由于是matplotlib显示,修改rgb顺序 ''' BORDER_REPLICATE:复制法,也就是复制最边缘像素。 BORDER_REFLECT:反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abcdefgh|hgfedcb BORDER_REFLECT_101:反射法,也就是以最边缘像素为轴,对称,gfedcb|abcdefgh|gfedcba BORDER_WRAP:外包装法cdefgh|abcdefgh|abcdefg BORDER_CONSTANT:常量法,常数值填充。 ''' replicate = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REPLICATE) reflect = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size,cv2.BORDER_REFLECT) reflect101 = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REFLECT_101) wrap = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_WRAP) constant = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size,cv2.BORDER_CONSTANT, value=0) plt.subplot(231), plt.imshow(img, 'gray'), plt.title('ORIGINAL') plt.subplot(232), plt.imshow(replicate, 'gray'), plt.title('REPLICATE') plt.subplot(233), plt.imshow(reflect, 'gray'), plt.title('REFLECT') plt.subplot(234), plt.imshow(reflect101, 'gray'), plt.title('REFLECT_101') plt.subplot(235), plt.imshow(wrap, 'gray'), plt.title('WRAP') plt.subplot(236), plt.imshow(constant, 'gray'), plt.title('CONSTANT') plt.show()

6.1.6阈值处理

import cv2 import numpy as np import matplotlib.pyplot as plt img_init = cv2.imread('test.jpg') b,g,r = cv2.split(img_init) img = cv2.merge((r,g,b)) img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ''' ret, dst = cv2.threshold(src, thresh, maxval, type) src: 输入图,只能输入单通道图像,通常来说为灰度图 dst: 输出图 thresh: 阈值 maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值 type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0 cv2.THRESH_BINARY_INV THRESH_BINARY的反转 cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变 cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0 cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转 ''' ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY) ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV) ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC) ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO) ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV) titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV'] images = [img, thresh1, thresh2, thresh3, thresh4, thresh5] for i in range(6): plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray') plt.title(titles[i]) plt.xticks([]), plt.yticks([]) plt.show()

6.1.7腐蚀和膨胀处理

腐蚀操作的图像一般都是二值(通过阈值处理可以生成二值图像)的。

import cv2 import matplotlib.pyplot as plt import numpy as np img_init = cv2.imread('test.jpg') #原始照片 img_gray = cv2.cvtColor(img_init,cv2.COLOR_BGR2GRAY) #灰度照片 ret,img_bin = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV) #灰度图转化成二值图 kernel = np.ones((30,30),np.uint8) #腐蚀处理 erosion_1 = cv2.erode(img_bin,kernel,iterations = 1) erosion_2 = cv2.erode(img_bin,kernel,iterations = 2) erosion_3 = cv2.erode(img_bin,kernel,iterations = 3) #膨胀处理 dilate_1 = cv2.dilate(img_bin,kernel,iterations = 1) dilate_2 = cv2.dilate(img_bin,kernel,iterations = 2) dilate_3 = cv2.dilate(img_bin,kernel,iterations = 3) #res = np.hstack((img_bin,erosion_1,erosion_2,erosion_3)) #图片合成一张上 #没有调整RGB,所以颜色有偏差 plt.subplot(331), plt.imshow(img_init),plt.title("init") plt.subplot(332), plt.imshow(img_gray),plt.title("gray") plt.subplot(333), plt.imshow(img_bin),plt.title("gray") plt.subplot(334), plt.imshow(erosion_1),plt.title("erode_1") plt.subplot(335), plt.imshow(erosion_2),plt.title("erode_2") plt.subplot(336), plt.imshow(erosion_3),plt.title("erode_3") plt.subplot(337), plt.imshow(dilate_1),plt.title("dilate_1") plt.subplot(338), plt.imshow(dilate_2),plt.title("dilate_2") plt.subplot(339), plt.imshow(dilate_3),plt.title("dilate_3") plt.show()
最新回复(0)