(1)(等效旋转矢量) ϕ = w + 1 2 ϕ × w + 1 θ 2 ( 1 − θ 2 c o t θ 2 ) ( ϕ ) 2 w \phi=w+\frac{1}{2}\phi\times w+\frac{1}{\theta^2}(1-\frac{\theta}{2}cot\frac{\theta}{2})(\phi)^2w ϕ=w+21ϕ×w+θ21(1−2θcot2θ)(ϕ)2w (2)(4元数) q = c o s θ 2 + u s i n θ 2 q=cos\frac{\theta}{2}+usin\frac{\theta}{2} q=cos2θ+usin2θ (3)(旋转矩阵) q = 1 2 q 。 w q=\frac{1}{2}q。w q=21q。w (4)(旋转矩阵) C = I + 2 q 0 ( q v × ) + 2 ( q v × ) 2 C=I+2q_0(q_v\times)+2(q_v\times)^2 C=I+2q0(qv×)+2(qv×)2 (5)(旋转矩阵) C = C w × C=Cw\times C=Cw× 补充:q->w w = u ϕ ˙ + u ˙ s i n θ + u ˙ × u ( 1 − c o s θ ) w=u\dot \phi+\dot usin\theta+\dot u\times u(1-cos\theta) w=uϕ˙+u˙sinθ+u˙×u(1−cosθ)