方法2:
import collections class Solution: def isAnagram(self, s: str, t: str) -> bool: return collections.Counter(s) == collections.Counter(t) 计算一组字符集合可以组成的回文字符串的最大长度 class Solution: def longestPalindrome(self, s: str) -> int: odd, res = 0, 0 d = {} for c in s: d[c] = d.get(c, 0) + 1 for key in d: if d[key] % 2 == 0: res += d[key] else: res += d[key]-1 odd = 1 return res if odd == 0 else res + 1 字符串同构 思路:用一个字典来统计字符及对应的数值。主要比较列表是否相同。 class Solution: def isIsomorphic(self, s: str, t: str) -> bool: # 如:paper:list_s=[1,2,1,3,4] d = {} list_s = [] new = 1 for c in s: if c in d: list_s.append(d[c]) else: d[c] = new list_s.append(new) new += 1 d = {} list_t = [] new = 1 for c in t: if c in d: list_t.append(d[c]) else: d[c] = new list_t.append(new) new += 1 return list_s == list_t 回文子字符串个数 暴力法: class Solution: def countSubstrings(self, s: str) -> int: n = len(s) res = 0 for i in range(0,n): for j in range(i+1,n+1): if s[i:j] == s[i:j][::-1]: res += 1 return res动态规划
class Solution: def countSubstrings(self, s: str) -> int: # 时间复杂度:O(N^2),空间复杂度:O(N^2) n = len(s) if n == 0: return 0 res = 0 dp = [[False for _ in range(n)] for _ in range(n)] for i in range(n): dp[i][i] = True for j in range(n): # 先有了i的状态才能有i+1的状态,所以此处遍历以j为主 for i in range(0, j): if j - i == 1: if s[i] == s[j]: dp[i][j] = True else: if s[i] == s[j]: dp[i][j] = dp[i + 1][j - 1] for i in range(n): for j in range(i, n): if dp[i][j] is True: res += 1 return res 判断一个整数是否是回文数(不能使用额外空间,即不能将整数转为字符串进行判断。) class Solution: def isPalindrome(self, x: int) -> bool: n = 0 x1=x if x<0: return False while x1: n = n*10+x1%10 x1 = x1//10 return n==x 统计二进制字符串中连续 1 和连续 0 数量相同的子字符串个数 Input: "00110011" Output: 6 Explanation:"0011", "01", "1100", "10", "0011", and "01". class Solution: def countBinarySubstrings(self, s: str) -> int: # 计数分割字符串。如00110分割为counts = [2, 2, 1],再对counts两两取最小值求和即为结果。 seq0, seq1 = 0, 1 # seq0记前面的数的连续数,seq1记当前数的连续数。上一个连续数是0个,现在的连续数为1。 res = 0 for i in range(1, len(s)): if s[i] == s[i-1]: seq1 += 1 # 第一次循环0==0,当前连续数+1,所以seq1=2 else: res += min(seq0, seq1) # 第二次循环0!=1,当前连续数终止,前一连续数与当前连续数最小值0作为结果。 seq0 = seq1 seq1 = 1 res += min(seq0, seq1) return res