转自:https://zhuanlan.zhihu.com/p/172121380
大白在之前写过《深入浅出Yolo系列之Yolov3&Yolov4核心基础知识完整讲解》
对Yolov4的相关基础知识做了比较系统的梳理,但Yolov4后不久,又出现了Yolov5,虽然作者没有放上和Yolov4的直接测试对比,但在COCO数据集的测试效果还是很可观的。
很多人考虑到Yolov5的创新性不足,对算法是否能够进化,称得上Yolov5而议论纷纷。
但既然称之为Yolov5,也有很多非常不错的地方值得我们学习。不过因为Yolov5的网络结构和Yolov3、Yolov4相比,不好可视化,导致很多同学看Yolov5看的云里雾里。
因此本文,大白主要对Yolov5四种网络结构的各个细节做一个深入浅出的分析总结,和大家一些探讨学习。
版权申明:本文包含图片,都为大白使用PPT所绘制的,如需网络结构高清图和模型权重,可点击查看下载。
Yolov5官方代码中,给出的目标检测网络中一共有4个版本,分别是Yolov5s、Yolov5m、Yolov5l、Yolov5x四个模型。
学习一个新的算法,最好在脑海中对算法网络的整体架构有一个清晰的理解。
但比较尴尬的是,Yolov5代码中给出的网络文件是yaml格式,和原本Yolov3、Yolov4中的cfg不同。
因此无法用netron工具直接可视化的查看网络结构,造成有的同学不知道如何去学习这样的网络。
比如下载了Yolov5的四个pt格式的权重模型:
大白在《深入浅出Yolo系列之Yolov3&Yolov4核心基础完整讲解》中讲到,可以使用netron工具打开网络模型。
但因为netron对pt格式的文件兼容性并不好,直接使用netron工具打开,会发现,根本无法显示全部网络。
因此可以采用pt->onnx->netron的折中方式,先使用Yolov5代码中models/export.py脚本将pt文件转换为onnx格式,再用netron工具打开,这样就可以看全网络的整体架构了。
如果有同学对netron工具还不是很熟悉,这里还是放上安装netron工具的详解,如果需要安装,可以移步大白的另一篇文章:《网络可视化工具netron详细安装流程》
如需下载Yolov5整体的4个网络pt文件及onnx文件,也可点击链接查看下载,便于直观的学习。
安装好netron工具,就可以可视化的打开Yolov5的网络结构。
这里大白也和之前讲解Yolov3&Yolov4同样的方式,绘制了Yolov5s整体的网络结构图,配合netron的可视化网络结构查看,脑海中的架构会更加清晰。
本文也会以Yolov5s的网络结构为主线,讲解与其他三个模型(Yolov5m、Yolov5l、Yolov5x)的不同点,让大家对于Yolov5有一个深入浅出的了解。
将四种模型pt文件的转换成对应的onnx文件后,即可使用netron工具查看。 但是,有些同学可能不方便,使用脚本转换查看。 因此,大白也上传了每个网络结构图的图片,也可以直接点击查看。 虽然没有netron工具更直观,但是也可以学习了解。
Yolov5s网络是Yolov5系列中深度最小,特征图的宽度最小的网络。后面的3种都是在此基础上不断加深,不断加宽。
上图绘制出的网络结构图也是Yolov5s的结构,大家也可直接点击查看,Yolov5s的网络结构可视化的图片。
此处也放上netron打开的Yolov5m网络结构可视图,点击即可查看,后面第二版块会详细说明不同模型的不同点。
此处也放上netronx打开的Yolov5l网络结构可视图,点击即可查看。
此处也放上netronx打开的Yolov5x网络结构可视图,点击即可查看。
Yolov3的网络结构是比较经典的one-stage结构,分为输入端、Backbone、Neck和Prediction四个部分。
大白在之前的《深入浅出Yolo系列之Yolov3&Yolov4核心基础知识完整讲解》中讲了很多,这里不多说,还是放上绘制的Yolov3的网络结构图。
Yolov4在Yolov3的基础上进行了很多的创新。 比如输入端采用mosaic数据增强,Backbone上采用了CSPDarknet53、Mish激活函数、Dropblock等方式,Neck中采用了SPP、FPN+PAN的结构,输出端则采用CIOU_Loss、DIOU_nms操作。
因此Yolov4对Yolov3的各个部分都进行了很多的整合创新,关于Yolov4详细的讲解还是可以参照大白之前写的《深入浅出Yolo系列之Yolov3&Yolov4核心基础知识完整讲解》,写的比较详细。
2.2 Yolov5核心基础内容
Yolov5的结构和Yolov4很相似,但也有一些不同,大白还是按照从整体到细节的方式,对每个板块进行讲解。
上图即Yolov5的网络结构图,可以看出,还是分为输入端、Backbone、Neck、Prediction四个部分。
大家可能对Yolov3比较熟悉,因此大白列举它和Yolov3的一些主要的不同点,并和Yolov4进行比较。
(1)输入端:Mosaic数据增强、自适应锚框计算、自适应图片缩放(2)Backbone:Focus结构,CSP结构(3)Neck:FPN+PAN结构(4)Prediction:GIOU_Loss
下面丢上Yolov5作者的算法性能测试图:
Yolov5作者也是在COCO数据集上进行的测试,大白在之前的文章讲过,COCO数据集的小目标占比,因此最终的四种网络结构,性能上来说各有千秋。
Yolov5s网络最小,速度最少,AP精度也最低。但如果检测的以大目标为主,追求速度,倒也是个不错的选择。
其他的三种网络,在此基础上,不断加深加宽网络,AP精度也不断提升,但速度的消耗也在不断增加。
(1)Mosaic数据增强
Yolov5的输入端采用了和Yolov4一样的Mosaic数据增强的方式。
Mosaic数据增强提出的作者也是来自Yolov5团队的成员,不过,随机缩放、随机裁剪、随机排布的方式进行拼接,对于小目标的检测效果还是很不错的。
Mosaic数据增强的内容在之前《深入浅出Yolo系列之Yolov3&Yolov4核心基础知识完整讲解》文章中写的很详细,详情可以查看之前的内容。
(2) 自适应锚框计算
在Yolo算法中,针对不同的数据集,都会有初始设定长宽的锚框。
在网络训练中,网络在初始锚框的基础上输出预测框,进而和真实框groundtruth进行比对,计算两者差距,再反向更新,迭代网络参数。
因此初始锚框也是比较重要的一部分,比如Yolov5在Coco数据集上初始设定的锚框:
在Yolov3、Yolov4中,训练不同的数据集时,计算初始锚框的值是通过单独的程序运行的。
但Yolov5中将此功能嵌入到代码中,每次训练时,自适应的计算不同训练集中的最佳锚框值。
当然,如果觉得计算的锚框效果不是很好,也可以在代码中将自动计算锚框功能关闭。
控制的代码即train.py中上面一行代码,设置成False,每次训练时,不会自动计算。
(3)自适应图片缩放
在常用的目标检测算法中,不同的图片长宽都不相同,因此常用的方式是将原始图片统一缩放到一个标准尺寸,再送入检测网络中。
比如Yolo算法中常用416*416,608*608等尺寸,比如对下面800*600的图像进行缩放。
但Yolov5代码中对此进行了改进,也是Yolov5推理速度能够很快的一个不错的trick。
作者认为,在项目实际使用时,很多图片的长宽比不同,因此缩放填充后,两端的黑边大小都不同,而如果填充的比较多,则存在信息冗余,影响推理速度。
因此在Yolov5的代码中datasets.py的letterbox函数中进行了修改,对原始图像自适应的添加最少的黑边。
图像高度上两端的黑边变少了,在推理时,计算量也会减少,即目标检测速度会得到提升。
这种方式在之前github上Yolov3中也进行了讨论:https://github.com/ultralytics/yolov3/issues/232
在讨论中,通过这种简单的改进,推理速度得到了37%的提升,可以说效果很明显。
但是有的同学可能会有大大的问号??如何进行计算的呢?大白按照Yolov5中的思路详细的讲解一下,在datasets.py的letterbox函数中也有详细的代码。
第一步:计算缩放比例
原始缩放尺寸是416*416,都除以原始图像的尺寸后,可以得到0.52,和0.69两个缩放系数,选择小的缩放系数。
第二步:计算缩放后的尺寸
原始图片的长宽都乘以最小的缩放系数0.52,宽变成了416,而高变成了312。
第三步:计算黑边填充数值
将416-312=104,得到原本需要填充的高度。再采用numpy中np.mod取余数的方式,得到40个像素,再除以2,即得到图片高度两端需要填充的数值。
此外,需要注意的是:
a.这里大白填充的是黑色,即(0,0,0),而Yolov5中填充的是灰色,即(114,114,114),都是一样的效果。
b.训练时没有采用缩减黑边的方式,还是采用传统填充的方式,即缩放到416*416大小。只是在测试,使用模型推理时,才采用缩减黑边的方式,提高目标检测,推理的速度。
(1)Focus结构
Focus结构,在Yolov3&Yolov4中并没有这个结构,其中比较关键是切片操作。
比如右图的切片示意图,4*4*3的图像切片后变成2*2*12的特征图。
以Yolov5s的结构为例,原始608*608*3的图像输入Focus结构,采用切片操作,先变成304*304*12的特征图,再经过一次32个卷积核的卷积操作,最终变成304*304*32的特征图。
需要注意的是:Yolov5s的Focus结构最后使用了32个卷积核,而其他三种结构,使用的数量有所增加,先注意下,后面会讲解到四种结构的不同点。
(2)CSP结构
Yolov4网络结构中,借鉴了CSPNet的设计思路,在主干网络中设计了CSP结构。
Yolov5与Yolov4不同点在于,Yolov4中只有主干网络使用了CSP结构。
而Yolov5中设计了两种CSP结构,以Yolov5s网络为例,CSP1_X结构应用于Backbone主干网络,另一种CSP2_X结构则应用于Neck中。
这里关于CSPNet的内容,也可以查看大白之前的《深入浅出Yolo系列之Yolov3&Yolov4核心基础完整讲解》。
Yolov5现在的Neck和Yolov4中一样,都采用FPN+PAN的结构,但在Yolov5刚出来时,只使用了FPN结构,后面才增加了PAN结构,此外网络中其他部分也进行了调整。
因此,大白在Yolov5刚提出时,画的很多结构图,又都重新进行了调整。
这里关于FPN+PAN的结构,大白在《深入浅出Yolo系列之Yolov3&Yolov4核心基础知识完整讲解》中,讲的很多,大家应该都有理解。
但如上面CSPNet结构中讲到,Yolov5和Yolov4的不同点在于,
Yolov4的Neck结构中,采用的都是普通的卷积操作。而Yolov5的Neck结构中,采用借鉴CSPnet设计的CSP2结构,加强网络特征融合的能力。
(1)Bounding box损失函数
在《深入浅出Yolo系列之Yolov3&Yolov4核心基础知识完整讲解》中,大白详细的讲解了IOU_Loss,以及进化版的GIOU_Loss,DIOU_Loss,以及CIOU_Loss。
Yolov5中采用其中的GIOU_Loss做Bounding box的损失函数。
而Yolov4中采用CIOU_Loss作为目标Bounding box的损失。
(2)nms非极大值抑制
在目标检测的后处理过程中,针对很多目标框的筛选,通常需要nms操作。
因为CIOU_Loss中包含影响因子v,涉及groudtruth的信息,而测试推理时,是没有groundtruth的。
所以Yolov4在DIOU_Loss的基础上采用DIOU_nms的方式,而Yolov5中采用加权nms的方式。
可以看出,采用DIOU_nms,下方中间箭头的黄色部分,原本被遮挡的摩托车也可以检出。
大白在项目中,也采用了DIOU_nms的方式,在同样的参数情况下,将nms中IOU修改成DIOU_nms。对于一些遮挡重叠的目标,确实会有一些改进。
比如下面黄色箭头部分,原本两个人重叠的部分,在参数和普通的IOU_nms一致的情况下,修改成DIOU_nms,可以将两个目标检出。
虽然大多数状态下效果差不多,但在不增加计算成本的情况下,有稍微的改进也是好的。
Yolov5代码中的四种网络,和之前的Yolov3,Yolov4中的cfg文件不同,都是以yaml的形式来呈现。
而且四个文件的内容基本上都是一样的,只有最上方的depth_multiple和width_multiple两个参数不同,很多同学看的一脸懵逼,不知道只通过两个参数是如何控制四种结构的?